U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for sulfamethazine

 
Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).

Showing 1 - 10 of 15 results

Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).
Status:
First approved in 1941
Source:
Sulamyd by Schering
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sulfacetamide is a synthetic sulfonamide antibiotic, which exerts its effect through inhibition of bacterial dihydrofolate synthetase, an enzyme responsible for the conversion of p-aminobenzoic acid into folic acid in bacterias. The topical formulation of the drug is prescribed for the treatment of acne vulgaris and the ophtalmic formulation is used in patients with eye infections.
Sulfadiazine is a sulfonamide antibiotic. The sulfonamides are synthetic bacteriostatic antibiotics with a wide spectrum against most gram-positive and many gram-negative organisms. However, many strains of an individual species may be resistant. Sulfonamides inhibit multiplication of bacteria by acting as competitive inhibitors of p-aminobenzoic acid in the folic acid metabolism cycle. Bacterial sensitivity is the same for the various sulfonamides, and resistance to one sulfonamide indicates resistance to all. Most sulfonamides are readily absorbed orally. However, parenteral administration is difficult, since the soluble sulfonamide salts are highly alkaline and irritating to the tissues. The sulfonamides are widely distributed throughout all tissues. High levels are achieved in pleural, peritoneal, synovial, and ocular fluids. Although these drugs are no longer used to treat meningitis, CSF levels are high in meningeal infections. Their antibacterial action is inhibited by pus. Sulfadiazine is a competitive inhibitor of the bacterial enzyme dihydropteroate synthetase. This enzyme is needed for the proper processing of para-aminobenzoic acid (PABA) which is essential for folic acid synthesis. The inhibited reaction is necessary in these organisms for the synthesis of folic acid. Used for the treatment of rheumatic fever and meningococcal meningitis.
Status:
US Approved OTC
Source:
21 CFR 333.110(c) first aid antibiotic:ointment chlortetracycline hydrochloride
Source URL:
First approved in 1948
Source:
Aureomycin Calcium by Lederle
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Chlortetracycline (trade name Aureomycin, Lederle) is a tetracycline antibiotic, the first tetracycline to be identified. It was discovered in 1945 by Benjamin Minge Duggar working at Lederle Laboratories under the supervision of Yellapragada Subbarow. Duggar identified the antibiotic as the product of an actinomycete he cultured from a soil sample collected from Sanborn Field at the University of Missouri. The organism was named Streptomyces aureofaciens and the isolated drug, Aureomycin, because of their golden color. Chlortetracycline inhibits cell growth by inhibiting translation. It binds to the 16S part of the 30S ribosomal subunit and prevents the amino-acyl tRNA from binding to the A site of the ribosome. In veterinary medicine, chlortetracycline is commonly used to treat conjunctivitis in cats.
Status:
Investigational
Source:
USAN:SULFANILATE ZINC [USAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Sodium sulfanilate is a salt of sulphanilic acid and has been used to monitor the degree of renal dysfunction in dogs.
Sulfamethazine is a sulfonamide used to treat a variety of bacterial diseases in animals. It inhibits bacterial synthesis of dihydrofolic acid by competing with para-aminobenzoic acid (PABA) for binding to dihydropteroate synthetase (dihydrofolate synthetase).
Status:
US Previously Marketed
Source:
TRIPLE SULFA by ALPHARMA US PHARMS
(1976)
Source URL:
First approved in 1943
Source:
Sulfamerazine by Lederle
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sulfamerazine is a sulfonamide antibiotic, which acts by inhibiting folic acid synthesis in bacterias. The primary target of sulfamerazine is believed to be dihydropteroate synthetase. Sulfamerazine (in comination with Sulfadiazine and Sulfamethazine) was used in the US under different names, including the earliest brand of Neotrizine. Nowdays, the drugs containing sulfamerazine are no longer available for use in humans in the US, however, they may be prescribed for veterinary purposes.
Status:
US Previously Marketed
Source:
SULFAGUANIDINE by LEDERLE
(1961)
Source URL:
First approved in 1941
Source:
Sulfaguanidine by Lederle
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sulfaguanidine is used to treat the gastrointestinal infections particularly bacillary dysentery. Sulfaguanidine is a sulfonamide antibiotic that blocks the synthesis of dihydrofolic acid by inhibiting the enzyme dihydropteroate synthase in bacteria. Sulfonamides are active against Gram positive bacteria and Gram negative bacteria.
Status:
Possibly Marketed Outside US
Source:
Canada:SULFAQUINOXALINE
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Sulfaquinoxaline is a veterinary drug, which can be given to animals to treat coccidiosis and Acute Fowl cholera. It has often used in combinations with others drugs. It had its origins in the chemical synthetic program that sprang from the introduction of sulfonamide drugs into human medicine in the 1930s. The program was sustained through the years of World War II despite declining clinical use of that chemical class. Several sulfa drugs were known to be active against the sporozoan parasite (Plasmodium spp.) that causes malaria, but were not satisfactory in clinical practice. A sulfonamide that had a long plasma half-life would ipso facto be considered promising as an antimalarial drug. Sulfaquinoxaline, synthesized during the war, was such a compound. It proved too toxic to be used in human malaria, but was found to be a superior agent against another sporozoan parasite, Eimeria spp., the causative agent of coccidiosis in domestic chickens. In 1948 sulfaquinoxaline was introduced commercially as a poultry coccidiostat. The action mechanism of sulfaquinoxaline is to inhibit the dihydrofolate synthetase to encumber the nucleate synthesis of bacterium and coccidian its active peak to coccidian is at the second schizont stage (the fourth day of coccidial life cycle), so it will not affect the anti-coccidial immunity in chicken.

Showing 1 - 10 of 15 results