{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for methylene root_relationships_comments in Relationship Comments (approximate match)
Showing 1 - 9 of 9 results
Status:
US Approved Rx
(1981)
Source:
NDA018163
(1981)
Source URL:
First approved in 1981
Source:
NDA018163
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Temazepam is a benzodiazepine used as a hypnotic agent in the management of insomnia. Temazepam produces CNS depression at limbic, thalamic, and hypothalamic levels of the CNS. Temazepam increases the affinity of the neurotransmitter gamma-aminobutyric acid (GABA) for GABA receptors by binding to benzodiazepine receptors. Results are sedation, hypnosis, skeletal muscle relaxation, anticonvulsant activity, and anxiolytic action. Benzodiazepines bind nonspecifically to benzodiazepine receptors, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell. Temazepam is used for the short-term treatment of insomnia (generally 7-10 days).
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Class (Stereo):
CHEMICAL (ACHIRAL)
Ridogrel is a dual action drug used for the prevention of systemic thrombo-embolism and as an adjunctive agent to thrombolytic therapy in acute myocardial infarction. Ridogrel, a combined thromboxane synthase inhibitor, and receptor antagonist is used with streptokinase as an adjunctive therapy to reduce the formation and size of blood clots. Blood clots can cause ischemic cardiac events (heart attacks). Ridogrel has the dual property of inhibiting the synthesis of thromboxane and blocking the receptors of thromboxane/prostaglandin/endoperoxides. It has been shown to accelerate the speed of recanalization and to delay or prevent reocclusion during systemic thrombolysis with tissue plasminogen activator (streptokinase). Ridogrel is a more potent antiplatelet agent than aspirin and might offer an advantage over aspirin as an adjunct to thrombolysis in patients suffering from acute myocardial infarction. While aspirin inhibits cyclooxygenase, the enzyme responsible for producing thromboxane, ridogrel inhibits thromboxane synthesis directly. Ridogrel has been studied primarily as an adjunctive agent to thrombolytic therapy in acute MI (AMI). Despite positive results from initial pilot studies, the largest clinical study, the Ridogrel versus Aspirin Patency Trial (RAPT) failed to demonstrate any advantage with this agent over aspirin. In the study of 907 patients with AMI, there was no difference in the primary endpoint of infarct vessel patency rate between those randomized to ridogrel (72.2%) or aspirin (75.5%). Various mechanisms are likely responsible for the results seen with ridogrel in clinical trials, including potentially ineffective thromboxane receptor inhibition with the concentrations of ridogrel used in human studies. As such, there currently are no clinical indications for preferential use of ridogrel over aspirin.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Other
Class:
CONCEPT