U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Bempedoic acid (also known as ETC-1002) is a novel investigational drug being developed for the treatment of dyslipidemia, hypercholesterolemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. Investigations into the mechanism of action revealed that bempedoic acid-free acid activates AMP-activated protein kinase in a Ca(2+)/calmodulin-dependent kinase β-independent and liver kinase β-1-dependent manner, without detectable changes in adenylate energy charge. In the liver, bempedoic acid is also converted to a coenzyme A (CoA) derivative (ETC-1002-CoA )which directly inhibits ATP citrate lyase (ACL), a key enzyme that supplies a substrate for cholesterol and fatty acid synthesis in the liver. Inhibition of ACL by ETC-1002-CoA results in reduced cholesterol synthesis and upregulation of LDL receptor activity in the liver. This promotes the removal of LDL-C from the blood.
Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Tamoxifen (brand name Nolvadex), is selective estrogen receptor modulators (SERM) with tissue-specific activities for the treatment and prevention of estrogen receptor positive breast cancer. Tamoxifen itself is a prodrug, having relatively little affinity for its target protein, the estrogen receptor (ER). It is metabolized in the liver by the cytochrome P450 isoform CYP2D6 and CYP3A4 into active metabolites such as 4-hydroxytamoxifen (4-OHT) (afimoxifene) and N-desmethyl-4-hydroxytamoxifen (endoxifen) which have 30–100 times more affinity with the ER than tamoxifen itself. These active metabolites compete with estrogen in the body for binding to the ER. In breast tissue, 4-OHT acts as an ER antagonist so that transcription of estrogen-responsive genes is inhibited. Tamoxifen has 7% and 6% of the affinity of estradiol for the ERα and ERβ, respectively, whereas 4-OHT has 178% and 338% of the affinity of estradiol for the ERα and ERβ. The prolonged binding of tamoxifen to the nuclear chromatin of these results in reduced DNA polymerase activity, impaired thymidine utilization, blockade of estradiol uptake, and decreased estrogen response. It is likely that tamoxifen interacts with other coactivators or corepressors in the tissue and binds with different estrogen receptors, ER-alpha or ER-beta, producing both estrogenic and antiestrogenic effects. Tamoxifen is currently used for the treatment of both early and advanced estrogen receptor (ER)-positive (ER+) breast cancer in pre- and post-menopausal women. Additionally, it is the most common hormone treatment for male breast cancer. Patients with variant forms of the gene CYP2D6 (also called simply 2D6) may not receive full benefit from tamoxifen because of too slow metabolism of the tamoxifen prodrug into its active metabolites. Tamoxifen is used as a research tool to trigger tissue-specific gene expression in many conditional expression constructs in genetically modified animals including a version of the Cre-Lox recombination technique. Tamoxifen has been shown to be effective in the treatment of mania in patients with bipolar disorder by blocking protein kinase C (PKC), an enzyme that regulates neuron activity in the brain. Researchers believe PKC is over-active during the mania in bipolar patients.
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Orphenadrine is an anticholinergic drug of the ethanolamine antihistamine class used to treat muscle pain and to help with motor control in Parkinson's disease but has largely been superseded by newer drugs. Orphenadrine binds and inhibits both histamine H1 receptors and NMDA receptors. It restores the motor disturbances induced by neuroleptics, in particular, the hyperkinesia. The dopamine deficiency in the striatum increases the stimulating effects of the cholinergic system. This stimulation is counteracted by the anticholinergic effect of orphenadrine. It may have a relaxing effect on skeletal muscle spasms and it has a mood elevating effect. Orphenadrine is indicated as an adjunct to rest, physical therapy, and other measures for the relief of discomfort associated with acute painful musculoskeletal conditions. Orphenadrine is an anticholinergic with a predominantly central effect and only a weak peripheral effect. In addition, it has mild antihistaminic and local anesthetic properties. Parkinson's syndrome is the consequence of a disturbed balance between cholinergic and dopaminergic neurotransmission in the basal ganglia caused by a decrease in dopamine. Orphenadrine restores the physiological equilibrium and has a favorable effect on the rigidity and tremor of Parkinson's disease and Parkinsonian syndromes. Adverse reactions of orphenadrine citrate are mainly due to the mild anticholinergic action of orphenadrine citrate and are usually associated with higher dosage. Dryness of the mouth is usually the first adverse effect to appear. When the daily dose is increased, possible adverse effects include tachycardia, palpitation, urinary hesitancy or retention, blurred vision, dilatation of pupils, increased ocular tension, weakness, nausea, vomiting, headache, dizziness, constipation, drowsiness, hypersensitivity reactions, pruritus, hallucinations, agitation, tremor, gastric irritation and rarely urticaria and other dermatoses
Diphenhydramine is an antihistamine which is used in the combination with naproxen sodium for the relief of occasional sleeplessness when associated with minor aches and pains. Diphenhydramine has a role nighttime sleep-aid and naproxen sodium is a pain reliever. In addition, diphenhydramine used in relieving symptoms in patients with moderate-to-severe seasonal allergic rhinitis. Diphenhydramine acts as an antagonist of histamine H1 receptor. Besides, was shown potential to repurpose diphenhydramine as an anti-melanoma therapeutic agent, it induces melanoma cell apoptosis by suppressing STAT3/MCL-1 survival signaling pathway.
Status:
US Approved OTC
Source:
21 CFR 331.11(e) antacid:citrate-containing citrate (containing active ingredients: citrate ion, as citric acid or salt)
Source URL:
First marketed in 1921
Source:
Potassium Citrate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Potassium citrate is indicated for the management of renal tubular acidosis with calcium stones, hypocitraturic calcium oxalate nephrolithiasis of any etiology, uric acid lithiasis with or without calcium stones. WhenPotassium citrate is given orally, the metabolism of absorbed citrate produces an alkaline load. The induced alkaline load in turn increases urinary pH and raises urinary citrate by augmenting citrate clearance without measurably altering ultrafilterable serum citrate. Thus, potassium citrate therapy appears to increase urinary citrate principally by modifying the renal handling of citrate, rather than by increasing the filtered load of citrate. Potassium citrate is used as a food additive (E 332) to regulate acidity.
Status:
Investigational
Source:
NCT00591708: Not Applicable Interventional Completed Bone Mineralization
(2004)
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)

Status:
Investigational
Source:
NCT01870115: Phase 1 Interventional Completed Osteoporosis
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
INN:centhaquine [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)