{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for dihydroartemisinin in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(2020)
Source:
NDA213036
(2020)
Source URL:
First approved in 2020
Source:
NDA213036
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sodium artesunate, an artemisinin derivative, is used in malaria treatment. Artesunate, has been licensed in Thailand for the
treatment of falciparum malaria since 1990. It is a potent antimalarial drug that can reduce parasitaemia by 90% within 24 h of administration. Sodium artesunate was first isolated in China, it is a water soluble antimalaria used clinically in China.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2014)
Source:
ANDA204476
(2014)
Source URL:
First approved in 1952
Source:
NDA008316
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Primaquine is a oral medication used to treat and prevent malaria and to treat Pneumocystis pneumonia. Specifically it is used for malaria due to Plasmodium vivax and Plasmodium ovale along with other medications and for prevention if other options cannot be used. Primaquine is an alternative treatment for Pneumocystis pneumonia together with clindamycin. Primaquine is lethal to P. vivax and P. ovale in the liver stage, and also to P. vivax in the blood stage through its ability to do oxidative damage to the cell. However, the exact mechanism of action is not fully understood. Primaquine is well-absorbed in the gut and extensively distributed in the body without accumulating in red blood cells. Administration of primaquine with food or grapefruit juice increases its oral bioavailibity. In blood, about 20% of circulating primaquine is protein-bound, with preferential binding to the acute phase protein orosomucoid. With a half-life on the order of 6 hours, it is quickly metabolized by liver enzymes to carboxyprimaquine, which does not have anti-malarial activity. Common side effects of primaquine administration include nausea, vomiting, and stomach cramps. Primaquine phosphate is recommended only for the radical cure of vivax malaria, the prevention of relapse in vivax malaria, or following the termination of chloroquine phosphate suppressive therapy in an area where vivax malaria is endemic. Patients suffering from an attack of vivax malaria or having parasitized red blood cells should receive a course of chloroquine phosphate, which quickly destroys the erythrocytic parasites and terminates the paroxysm. Primaquine phosphate should be administered concurrently in order to eradicate the exoerythrocytic parasites in a dosage of 1 tablet (equivalent to 15 mg base) daily for 14 days.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Piperaquine is a bisquinoline antimalarial drug that was first synthesized in the 1960s and used extensively in China and Indochina as prophylaxis and treatment during the next 20 years. Usage declined in the 1980s as piperaquine-resistant strains of P. falciparum arose and artemisinin-based antimalarials became available. However, during the next decade, piperaquine was rediscovered by Chinese scientists as one of a number of compounds suitable for combination with an artemisinin derivative. The rationale for such artemisinin combination therapies (ACTs) was to provide an inexpensive, short-course treatment regimen with a high cure rate and good tolerability that would reduce transmission and protect against the development of parasite resistance. Piperaquine is characterized by slow absorption and a long biological half-life, making it a good partner drug with artemisinin derivatives which are fast acting but have a short biological half-life.