U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Prednisolone is a synthetic adrenocortical steroid drug with predominantly glucocorticoid properties. Some of these properties reproduce the physiological actions of endogenous glucocorticosteroids, but others do not necessarily reflect any of the adrenal hormones’ normal functions; they are seen only after administration of large therapeutic doses of the drug. The pharmacological effects of prednisolone which are due to its glucocorticoid properties include: promotion of gluconeogenesis; increased deposition of glycogen in the liver; inhibition of the utilization of glucose; anti-insulin activity; increased catabolism of protein; increased lipolysis; stimulation of fat synthesis and storage; increased glomerular filtration rate and resulting increase in urinary excretion of urate (creatinine excretion remains unchanged); and increased calcium excretion. Prednisolone is used to treat certain types of allergies, inflammatory conditions, autoimmune disorders, and cancers. Some of these conditions include adrenocortical insufficiency, high blood calcium, rheumatoid arthritis, dermatitis, eye inflammation, asthma, and multiple sclerosis.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Previously Marketed
Source:
Sodium Albamycin by Upjohn
(1956)
Source URL:
First approved in 1956
Source:
Sodium Albamycin by Upjohn
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Novobiocin (also known as streptonivicin) is an aminocoumarin antibiotic, active against Staphylococcus epidermidis. Novobiocin and other aminocoumarin antibiotics act as a potent competitive inhibitor of DNA gyrase B. The oral form of the drug was withdrawn from the market in 1999 due to safety or effectiveness reasons. Later it was discovered that novobiocin inhibited Hsp90 and topoisomerase II, and novobiocin was investigated in clinical trials against metastatic breast cancer and non-small cell lung cancer. Topical form of novobiocin was investigated in combination with nalidixic acid for treatment of psoriasis.
Status:
First approved in 1943
Source:
Penicillin G Sodium by Various Mfrs.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved OTC
Source:
21 CFR 333.110(f) first aid antibiotic:ointment tetracycline hydrochloride
Source URL:
First approved in 1953

Class (Stereo):
CHEMICAL (ABSOLUTE)



Discovered as natural products from actinomycetes soil bacteria, the tetracyclines were first reported in the scientific literature in 1948. They were noted for their broad spectrum antibacterial activity and were commercialized with clinical success beginning in the late 1940s to the early 1950s. By catalytic hydrogenation of Aureomycin, using palladium metal and hydrogen, the C7 deschloro derivative was synthesized, producing a compound of higher potency, a better solubility profile, and favorable pharmacological activity; it was subsequently named tetracycline. Tetracyclines are primarily bacteriostatic and exert their antimicrobial effect by the inhibition of protein synthesis by binding to the 30S ribosomal subunit. Tetracycline is active against a broad range of gram-negative and gram-positive organisms. Tetracycline is indicated in the treatment of infections caused by susceptible strains. To reduce the development of drug-resistant bacteria and maintain the effectiveness of tetracycline hydrochloride and other antibacterial drugs, tetracycline hydrochloride should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.
Status:
US Previously Marketed
Source:
Sodium Albamycin by Upjohn
(1956)
Source URL:
First approved in 1956
Source:
Sodium Albamycin by Upjohn
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Novobiocin (also known as streptonivicin) is an aminocoumarin antibiotic, active against Staphylococcus epidermidis. Novobiocin and other aminocoumarin antibiotics act as a potent competitive inhibitor of DNA gyrase B. The oral form of the drug was withdrawn from the market in 1999 due to safety or effectiveness reasons. Later it was discovered that novobiocin inhibited Hsp90 and topoisomerase II, and novobiocin was investigated in clinical trials against metastatic breast cancer and non-small cell lung cancer. Topical form of novobiocin was investigated in combination with nalidixic acid for treatment of psoriasis.