{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for amikacin in Code Comments (approximate match)
Showing 1 - 3 of 3 results
Status:
US Approved Rx
(2020)
Source:
ANDA212721
(2020)
Source URL:
First approved in 1996
Source:
MAXIPIME by HOSPIRA INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefepime is a fourth-generation cephalosporin antibiotic, which was developed in 1994. Cefepime has a broad spectrum in vitro activity that encompasses a wide range of Gram-positive and Gram-negative bacteria. Within bacterial cells, the molecular targets of cefepime are the penicillin binding proteins (PBP). It is FDA approved for the treatment of pneumonia, febrile neutropenia, uncomplicated UTI, uncomplicated skin infection and complicated intraabdominal infections. Common adverse reactions include rash, hypophosphatemia, diarrhea. Cefepime is metabolized to N-methylpyrrolidine (NMP) which is rapidly converted to the N-oxide (NMP-N-oxide). Urinary recovery of unchanged cefepime accounts for approximately 85% of the administered dose. Less than 1% of the administered dose is recovered from urine as NMP, 6.8% as NMP-N-oxide, and 2.5% as an epimer of cefepime. Because renal excretion is a significant pathway of elimination, patients with renal dysfunction and patients undergoing hemodialysis require dosage adjustment.
Status:
US Approved Rx
(1993)
Source:
ANDA064045
(1993)
Source URL:
First approved in 1976
Source:
AMIKIN by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Amikacin, USP (as the sulfate) is a semi-synthetic aminoglycoside antibiotic derived from kanamycin. Amikacin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Amikacin is used for short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections. Amikacin was used for the treatment of gram-negative pneumonia.
Status:
US Approved Rx
(1993)
Source:
ANDA064045
(1993)
Source URL:
First approved in 1976
Source:
AMIKIN by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Amikacin, USP (as the sulfate) is a semi-synthetic aminoglycoside antibiotic derived from kanamycin. Amikacin "irreversibly" binds to specific 30S-subunit proteins and 16S rRNA. Amikacin inhibits protein synthesis by binding to the 30S ribosomal subunit to prevent the formation of an initiation complex with messenger RNA. Specifically Amikacin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Amikacin is used for short-term treatment of serious infections due to susceptible strains of Gram-negative bacteria, including Pseudomonas species, Escherichia coli, species of indole-positive and indole-negative Proteus, Providencia species, Klebsiella-Enterobacter-Serratia species, and Acinetobacter (Mima-Herellea) species. Amikacin may also be used to treat Mycobacterium avium and Mycobacterium tuberculosis infections. Amikacin was used for the treatment of gram-negative pneumonia.