{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
penicillin g
to a specific field?
There is one exact (name or code) match for penicillin g
Status:
US Approved Rx
(2009)
Source:
ANDA065448
(2009)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(2009)
Source:
ANDA065448
(2009)
Source URL:
First approved in 1943
Class (Stereo):
CHEMICAL (ABSOLUTE)
Penicillin G, also known as benzylpenicillin, is a penicillin derivative commonly used in the form of its sodium or potassium salts in the treatment of a variety of infections. It is effective against most gram-positive bacteria and against gram-negative cocci. It is administered intravenously or intramuscularly due to poor oral absorption. Penicillin G may also be used in some cases as prophylaxis against susceptible organisms. Microbiology Penicillin G is bactericidal against penicillin-susceptible microorganisms during the stage of active multiplication. It acts by inhibiting biosynthesis of cell-wall mucopeptide. It is not active against the penicillinase-producing bacteria, which include many strains of staphylococci. Penicillin G is highly active in vitro against staphylococci (except penicillinase-producing strains), streptococci (groups A, B, C, G, H, L and M), pneumococci and Neisseria meningitidis. Other organisms susceptible in vitro to penicillin G are Neisseria gonorrhoeae, Corynebacterium diphtheriae, Bacillus anthracis, clostridia, Actinomyces species, Spirillum minus, Streptobacillus monillformis, Listeria monocytogenes, and leptospira; Treponema pallidum is extremely susceptible. Adverse effects can include hypersensitivity reactions including urticaria, fever, joint pains, rashes, angioedema, anaphylaxis, serum sickness-like reaction.
Status:
US Approved Rx
(2025)
Source:
NDA219209
(2025)
Source URL:
First approved in 2025
Source:
NDA219209
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2025)
Source:
NDA219304
(2025)
Source URL:
First approved in 2025
Source:
NDA219304
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
US Approved Rx
(2025)
Source:
NDA219389
(2025)
Source URL:
First approved in 2025
Source:
NDA219389
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
PD-0325901 is an orally bioavailable inhibitor of mitogen-activated protein kinase kinases (MAPK/ERK kinases or MEK) with potential antineoplastic activity. MEK inhibitor PD325901, a derivative of MEK inhibitor CI-1040, selectively binds to and inhibits MEK, which may result in the inhibition of the phosphorylation and activation of MAPK/ERK and the inhibition of tumor cell proliferation. PD-0325901 is tested in clinical trials against non-small cell lung cancer, neurofibromatosis, melanoma and breast cancer.
Status:
US Approved Rx
(2025)
Source:
NDA214759
(2025)
Source URL:
First approved in 2025
Source:
NDA214759
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Treosulfan (l-threitol-1,4-bis-methanesulfonate; dihydroxybusulfan) is a prodrug of a bifunctional alkylating cytotoxic agent that is approved for the treatment of ovarian carcinomas in a number of European countries. The antitumor activity of treosulfan has been shown in a variety of solid tumors. It is used for the treatment of all types of ovarian cancer, either supplementary to surgery or palliatively. Treosulfan is a prodrug that is converted nonenzymatically first to a mono-epoxide – (2S,3S)- 1,2-epoxy-3,4-butanediol-4-methanesulfonate – and then to a diepoxide – l-diepoxybutane, which is also a metabolite of butadiene – under physiological conditions. Such conversions are assumed to account for the alkylating and therapeutic activities of treosulfan.
Status:
US Approved Rx
(2024)
Source:
NDA218944
(2024)
Source URL:
First approved in 2024
Source:
NDA218944
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
US Approved Rx
(2024)
Source:
NDA216540
(2024)
Source URL:
First approved in 2024
Source:
NDA216540
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
US Approved Rx
(2024)
Source:
NDA218730
(2024)
Source URL:
First approved in 2024
Source:
NDA218730
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
CTP-656 is a deuterium-modified form of ivacaftor, an FDA-approved drug for the treatment of cystic fibrosis. CTP-656 is jointly developed by Concert Pharmaceuticals and Vertex Pharmaceuticals, and is believed to have higher metabolic stability, lower toxic byproducts and increased half-life compared to the original. CTP-656 acts as a potentiator of is a cystic fibrosis transmembrane conductance regulator (CFTR) protein. CTP-656 is investigated in phase 2 clinical trials for the treatment of cystic fibrosis.
Status:
US Approved Rx
(2024)
Source:
NDA216158
(2024)
Source URL:
First approved in 2024
Source:
NDA216158
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Xanomeline (LY-246,708) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring. It is also known to act as a M5 receptor antagonist. Xanomeline was studied in clinical trials phase I in schizophrenia. In Phase II clinical trials in Alzheimer’s patients, xanomeline significantly improved several measures of cognitive function, yet produced unwanted side effects that limited patient compliance. The side effects seem to be associated with rapid metabolism of the alkyloxy side chain following oral administration, resulting in a nonselective, yet active compound with limited therapeutic utility. Despite a second Phase II clinical trial with a patch formulation, the liabilities of xanomeline still outweigh its benefits.
Status:
US Approved Rx
(2024)
Source:
NDA217865
(2024)
Source URL:
First approved in 2024
Source:
NDA217865
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Gavinostat is an orally bioavailable hydroxymate inhibitor of histone deacetylase (HDAC) with potential anti-inflammatory, anti-angiogenic, and antineoplastic activities. Gavinostat inhibits class I and class II HDACs, resulting in an accumulation of highly acetylated histones, followed by the induction of chromatin remodeling and an altered pattern of gene expression. At low, nonapoptotic concentrations, this agent inhibits the production of pro-inflammatory cytokines such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), IL-6 and interferon-gamma. It is currently in phase 2 trials for Myeloproliferative disorders, Polycythaemia vera and Phase III for Duchenne muscular dystrophy announced. In clinical trials of givinostat as a salvage therapy for advanced Hodgkin's lymphoma, the most common adverse reactions were fatigue, mild diarrhea or abdominal pain, moderate thrombocytopenia, and mild leukopenia.