{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
mitomycin
to a specific field?
There is one exact (name or code) match for mitomycin
Status:
US Approved Rx
(1995)
Source:
ANDA064117
(1995)
Source URL:
First approved in 1974
Source:
MUTAMYCIN by BRISTOL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. One of these compounds, mitomycin C, finds use as a chemotherapeutic agent by virtue of its antitumour activity. Mitomycin C has also been used topically rather than intravenously in several areas. The first is cancers, particularly bladder cancers and intraperitoneal tumours. It is now well known that a single instillation of this agent within 6 hours of bladder tumor resection can prevent recurrence. The second is in eye surgery where mitomycin C 0.02% is applied topically to prevent scarring during glaucoma filtering surgery and to prevent haze after PRK or LASIK; mitomycin C has also been shown to reduce fibrosis in strabismus surgery. The third is in esophageal and tracheal stenosis where application of mitomycin C onto the mucosa immediately following dilatation will decrease re-stenosis by decreasing the production of fibroblasts and scar tissue. Mitomycin C is a potent DNA crosslinker. A single crosslink per genome has shown to be effective in killing bacteria. This is accomplished by reductive activation of mitomycin to form a mitosene, which reacts successively via N-alkylation of two DNA bases. Both alkylations are sequence specific for a guanine nucleoside in the sequence 5'-CpG-3'. Potential bis-alkylating heterocylic quinones were synthetised in order to explore their antitumoral activities by bioreductive alkylation. Mitomycin is also used as a chemotherapeutic agent in glaucoma surgery.
Status:
US Approved Rx
(1995)
Source:
ANDA064117
(1995)
Source URL:
First approved in 1974
Source:
MUTAMYCIN by BRISTOL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. One of these compounds, mitomycin C, finds use as a chemotherapeutic agent by virtue of its antitumour activity. Mitomycin C has also been used topically rather than intravenously in several areas. The first is cancers, particularly bladder cancers and intraperitoneal tumours. It is now well known that a single instillation of this agent within 6 hours of bladder tumor resection can prevent recurrence. The second is in eye surgery where mitomycin C 0.02% is applied topically to prevent scarring during glaucoma filtering surgery and to prevent haze after PRK or LASIK; mitomycin C has also been shown to reduce fibrosis in strabismus surgery. The third is in esophageal and tracheal stenosis where application of mitomycin C onto the mucosa immediately following dilatation will decrease re-stenosis by decreasing the production of fibroblasts and scar tissue. Mitomycin C is a potent DNA crosslinker. A single crosslink per genome has shown to be effective in killing bacteria. This is accomplished by reductive activation of mitomycin to form a mitosene, which reacts successively via N-alkylation of two DNA bases. Both alkylations are sequence specific for a guanine nucleoside in the sequence 5'-CpG-3'. Potential bis-alkylating heterocylic quinones were synthetised in order to explore their antitumoral activities by bioreductive alkylation. Mitomycin is also used as a chemotherapeutic agent in glaucoma surgery.
Status:
US Approved Rx
(2015)
Source:
NDA208194
(2015)
Source URL:
First approved in 2008
Source:
NDA022303
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Bendamustine, brand name Treanda, is a chemotherapeutic agent that displays a unique pattern of cytotoxicity compared with conventional alkylating agents. Treanda is indicated for the treatment of patients with chronic lymphocytic leukemia (CLL), in addition Trenda in phase III of clinical trial for the treatment patients with indolent B-cell non-Hodgkin lymphoma (NHL) that has progressed during or within six months of treatment with rituximab or a rituximab-containing regimen. Bendamustine is a bifunctional mechlorethamine derivative. Mechlorethamine and its derivatives dissociate into electrophilic alkyl groups. These groups form covalent bonds with electron-rich nucleophilic moieties. The bifunctional covalent linkage can lead to cell death via several pathways. The exact mechanism of action of bendamustine remains unknown. Molecular analyses have revealed that bendamustine differs from other alkylating agents in its mechanism of action. Differences have been observed about its effects on DNA repair and cell cycle progression. Moreover, bendamustine can induce cell death through both apoptotic and nonapoptotic pathways, thereby retaining activity even in cells without a functional apoptotic pathway. Bendamustine possesses the typical adverse reactions for the nitrogen mustards, and include nausea, fatigue, vomiting, diarrhea, fever, constipation, loss of appetite, cough, headache, unintentional weight loss.
Status:
US Approved Rx
(2014)
Source:
ANDA201742
(2014)
Source URL:
First approved in 1999
Source:
TEMODAR by MERCK SHARP DOHME
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
NEO 212 is novel DNA alkylating agent exhibiting superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo. NEO212 is a conjugate of temozolomide (TMZ,) with the natural product perillyl alcohol (POH). NEO 212 causes DNA damage and cell death much more efficiently than TMZ because linkage with POH increased it's biological half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions.
Status:
US Approved Rx
(1976)
Source:
NDA017588
(1976)
Source URL:
First approved in 1976
Source:
NDA017588
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Lomustine is used in the treatment of certain neoplastic diseases. Although it is generally agreed that lomustine alkylates DNA and RNA, it is not cross resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Common adverse reactions include delayed myelosupression, nausea, vomiting, stomatitis, and alopecia.
Status:
US Approved Rx
(1969)
Source:
NDA016785
(1969)
Source URL:
First approved in 1969
Source:
NDA016785
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Procarbazine is a chemotherapy medication used for the treatment of Hodgkin's lymphoma and brain cancers. For Hodgkin's it is often used together with mechlorethamine, vincristine, and prednisone while for brain cancers such as glioblastoma multiforme it is used with lomustine and vincristine. Procarbazine inhibits DNA, RNA, and protein synthesis by inhibiting transmethylation of methionine into transfer RNA; may also damage DNA directly through alkylation. Common side effect include low blood cell counts and vomiting. Other side effects include tiredness and depression.
Status:
US Approved Rx
(2020)
Source:
ANDA209197
(2020)
Source URL:
First approved in 1964
Source:
ALKERAN by APOTEX
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Melphalan, also known as L-phenylalanine mustard, phenylalanine mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which produces a number of DNA adducts with the DNA interstrand crosslink (ICL) considered to be the critical cytotoxic lesion. Melphalan is used to treat different cancers including myeloma, melanoma and ovarian cancer.
Status:
Investigational
Source:
NCT03823989: Phase 1 Interventional Completed Cancer
(2019)
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Porfiromycin is an N-methyl derivative of the antineoplastic antibiotic mitomycin-C initially isolated from Streptomyces ardus. Upon administration, the drug undergoes chemical or enzymatic reduction, followed by spontaneous loss of the tertiary methoxy (hydroxyl) group and formation of an aromatic indole system. Thus activated, porfiromycin generates oxygen radicals and alkylates DNA, producing interstrand cross-links and single-strand breaks at guanosine residues. Porfiromycin was tested in phase III for head and neck carcinoma, however, its development was terminated.