U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for methoxsalen

 
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.

Showing 1 - 10 of 10 results

Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Isopimpinellin is a natural product synthesized by Umbelliferae (or Apiaceae), also known as the carrot or parsley family. It can be found in celery, garden angelica, parsnip, fruits and in the rind and pulp of limes. There have been several studies looking into the effects of Isopimpinellin and other so-called naturally occurring coumarins (such as bergamottin and Imperatorin) as anticarcinogens.
Status:
US Previously Marketed
First approved in 1964

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:

Conditions:

Trioxsalen (trimethylpsoralen, trioxysalen or trisoralen) is a furanocoumarin and a psoralen derivative. It is obtained from several plants, mainly Psoralea corylifolia. Like other psoralens it causes photosensitization of the skin. It is administered either topically or orally in conjunction with UV-A (the least damaging form of ultraviolet light) for phototherapy treatment of vitiligo1 and hand eczema.2 After photoactivation it creates interstrand cross-links in DNA, which can cause programmed cell death unless repaired by cellular mechanisms. In research it can be conjugated to dyes for confocal microscopy and used to visualize sites of DNA damage.3 The compound is also being explored for development of antisense oligonucleotides that can be cross-linked specifically to a mutant mRNA sequence without affecting normal transcripts differing at even a single base pair.Trioxsalen was discontinued by the manufacturer in December 2002.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)



Bergapten, known as 5-methoxypsoralen, a cumarine-derivate compound, presents in many fruits and vegetables. It has shown antitumor effects in a variety of cell types. The key target of bergapten action in breast cancer cells was identified the oncosuppressor gene PTEN (phosphatase tensin homolog deleted from chromosome 10); bergapten by inducing PTEN expression, produces autophagy in breast cancer cells. Besides, bergapten is under investigation in clinical trial phase III for patients with severe generalized atopic dermatitis.
Verteporfin (trade name Visudyne), a benzoporphyrin derivative, is a medication used for the treatment of patients with predominantly classic subfoveal choroidal neovascularization due to age-related macular degeneration, pathologic myopia or presumed ocular histoplasmosis syndrome. Verteporfin can also be used to destroy tumors. Verteporfin is a 1:1 mixture of two regioisomers (I and II), VISUDYNE therapy is a two-stage process requiring administration of both verteporfin for injection and nonthermal red light. Verteporfin accumulates in these abnormal blood vessels and, when stimulated by nonthermal red light with a wavelength of 689 nm in the presence of oxygen, produces highly reactive short-lived singlet oxygen and other reactive oxygen radicals, resulting in local damage to the endothelium and blockage of the vessels. Verteporfin is also used off-label for the treatment of central serous retinopathy. Verteporfin is given intravenously, 15 minutes before laser treatment. Light activation of verteporfin results in local damage to neovascular endothelium, resulting in vessel occlusion. Damaged endothelium is known to release procoagulant and vasoactive factors through the lipo-oxygenase (leukotriene) and cyclo-oxygenase (eicosanoids such as thromboxane) pathways, resulting in platelet aggregation, fibrin clot formation and vasoconstriction. Verteporfin appears to somewhat preferentially accumulate in neovasculature, including choroidal neovasculature. However, animal models indicate that the drug is also present in the retina. Therefore, there may be collateral damage to retinal structures following photoactivation including the retinal pigmented epithelium and outer nuclear layer of the retina. The temporary occlusion of choroidal neovascularization (CNV) following VISUDYNE therapy has been confirmed in humans by fluorescein angiography.
Porfimer is a photosensitizing agent used in the photodynamic therapy (PDT) of tumors. Porfimer sodium was approved under the brand name PHOTOFRIN for the palliation of patients with completely obstructing esophageal cancer, or of patients with partially obstructing esophageal cancer who, in the opinion of their physician, cannot be satisfactorily treated with Nd:YAG laser therapy. For the reduction of obstruction and palliation of symptoms in patients with completely or partially obstructing endobronchial nonsmall cell lung cancer (NSCLC). For the treatment of microinvasive endobronchial NSCLC in patients for whom surgery and radiotherapy are not indicated. In addition, for the ablation of high-grade dysplasia in Barrett’s esophagus patients who do not undergo esophagectomy. The cytotoxic and antitumor actions of PHOTOFRIN® are light and oxygen dependent. Photodynamic therapy with Porfimer sodium is a two-stage process. The first stage is the intravenous injection of the drug, which mainly is concentrated in the tumor tissues for a longer period. Illumination with 630 nm wavelength laser light constitutes the second stage of therapy. Cellular damage is a consequence of the propagation of radical reactions. Radical initiation may occur after porfimer absorbs light to form a porphyrin excited state. Tumor death also occurs through ischemic necrosis secondary to vascular occlusion that appears to be partly mediated by thromboxane A2 release. The laser treatment induces a photochemical, not a thermal, effect. The necrotic reaction and associated inflammatory responses may evolve over several days.
structurally diverse
Status:
Other

Class:
STRUCTURALLY DIVERSE

structurally diverse
Status:
US Previously Marketed
Source:
Angelica Root N.F.
(1921)
Source URL:
First marketed in 1921
Source:
Angelica Root N.F.
Source URL:

Class:
STRUCTURALLY DIVERSE

structurally diverse
Status:
Possibly Marketed Outside US

Class:
STRUCTURALLY DIVERSE

structurally diverse
Status:
Possibly Marketed Outside US
Source:
Canada:AMMI VISNAGA
Source URL:

Class:
STRUCTURALLY DIVERSE