U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Methoxsalen — also called xanthotoxin, marketed under the trade names Oxsoralen, Deltasoralen, Meladinine — is a drug used to treat psoriasis, eczema, vitiligo, and some cutaneous lymphomas in conjunction with exposing the skin to UVA light from lamps or sunlight. Methoxsalen modifies the way skin cells receive the UVA radiation, allegedly clearing up the disease. The dosage comes in 10 mg tablets, which are taken in the amount of 30 mg 75 minutes before a PUVA (psoralen + UVA) light treatment. Chemically, methoxsalen belongs to a class of organic natural molecules known as furanocoumarins. They consist of coumarin annulated with furan. It can also be injected and used topically. The exact mechanism of action of methoxsalen with the epidermal melanocytes and keratinocytes is not known. The best known biochemical reaction of methoxsalen is with DNA. Methoxsalen, upon photoactivation, conjugates and forms covalent bonds with DNA which leads to the formation of both monofunctional (addition to a single strand of DNA) and bifunctional adducts (crosslinking of psoralen to both strands of DNA) Reactions with proteins have also been described. Methoxsalen acts as a photosensitizer. Administration of the drug and subsequent exposure to UVA can lead to cell injury. Orally administered methoxsalen reaches the skin via the blood and UVA penetrates well into the skin. If sufficient cell injury occurs in the skin, an inflammatory reaction occurs. The most obvious manifestation of this reaction is delayed erythema, which may not begin for several hours and peaks at 48–72 hours. The inflammation is followed, over several days to weeks, by repair which is manifested by increased melanization of the epidermis and thickening of the stratum corneum. The mechanisms of therapy are not known. In the treatment of vitiligo, it has been suggested that melanocytes in the hair follicle are stimulated to move up the follicle and to repopulate the epidermis. In the treatment of psoriasis, the mechanism is most often assumed to be DNA photodamage and resulting decrease in cell proliferation but other vascular, leukocyte, or cell regulatory mechanisms may also be playing some role. Psoriasis is a hyperproliferative disorder and other agents known to be therapeutic for psoriasis are known to inhibit DNA synthesis. The most commonly reported side effect of methoxsalen alone is nausea, which occurs with approximately 10% of all patients. This effect may be minimized or avoided by instructing the patient to take methoxsalen with milk or food, or to divide the dose into two portions, taken approximately one-half hour apart. Other effects include nervousness, insomnia, and psychological depression.
Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Isopimpinellin is a natural product synthesized by Umbelliferae (or Apiaceae), also known as the carrot or parsley family. It can be found in celery, garden angelica, parsnip, fruits and in the rind and pulp of limes. There have been several studies looking into the effects of Isopimpinellin and other so-called naturally occurring coumarins (such as bergamottin and Imperatorin) as anticarcinogens.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)



Bergapten, known as 5-methoxypsoralen, a cumarine-derivate compound, presents in many fruits and vegetables. It has shown antitumor effects in a variety of cell types. The key target of bergapten action in breast cancer cells was identified the oncosuppressor gene PTEN (phosphatase tensin homolog deleted from chromosome 10); bergapten by inducing PTEN expression, produces autophagy in breast cancer cells. Besides, bergapten is under investigation in clinical trial phase III for patients with severe generalized atopic dermatitis.