U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for methixene

 
Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.
Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.
Status:
US Previously Marketed
First approved in 1965

Class (Stereo):
CHEMICAL (RACEMIC)



Methixene is a tertiary antimuscarinic with actions similar to those of atropine; it also has antihistaminic and direct antispasmodic properties. It is used for the symptomatic treatment of parkinsonism, including the alleviation of the extrapyramidal syndrome induced by other drugs such as phenothiazines, but, like other antimuscarinics, it is of no value against tardive dyskinesias. Metixene has been discontinued. Parkinsonism is thought to result from an imbalance between the excitatory (cholinergic) and inhibitory (dopaminergic) systems in the corpus striatum. The mechanism of action of centrally active anticholinergic drugs such as metixene is considered to relate to competitive antagonism of acetylcholine at muscarinic receptors in the corpus striatum, which then restores the balance.