U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for lomitapide

 
Lomitapide (INN, marketed as Juxtapid in the US and as Lojuxta in the EU) is a drug for the treatment of familial hypercholesterolemia, developed by Aegerion Pharmaceuticals. It has been tested in clinical trials as single treatment and in combinations with atorvastatin, ezetimibe and fenofibrate. The US Food and Drug Administration (FDA) approved lomitapide on 21 December 2012, as an orphan drug to reduce LDL cholesterol, total cholesterol, apolipoprotein B, and non-high-density lipoprotein (non-HDL) cholesterol in patients with homozygous familial hypercholesterolemia (HoFH). On 31 May 2013 the European Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion with a unanimous vote recommending a marketing authorization for lomitapide. On 31 July 2013 the European Commission approved lomitapide as an adjunct to a low-fat diet and other lipid-lowering medicinal products with or without low density lipoprotein (LDL) apheresis in adult patients with HoFH. UXTAPID directly binds and inhibits microsomal triglyceride transfer protein (MTP), which resides in the lumen of the endoplasmic reticulum, thereby preventing the assembly of apo B containing lipoproteins in enterocytes and hepatocytes. This inhibits the synthesis of chylomicrons and VLDL. The inhibition of the synthesis of VLDL leads to reduced levels of plasma LDL-C.

Showing 1 - 10 of 39 results

Lomitapide (INN, marketed as Juxtapid in the US and as Lojuxta in the EU) is a drug for the treatment of familial hypercholesterolemia, developed by Aegerion Pharmaceuticals. It has been tested in clinical trials as single treatment and in combinations with atorvastatin, ezetimibe and fenofibrate. The US Food and Drug Administration (FDA) approved lomitapide on 21 December 2012, as an orphan drug to reduce LDL cholesterol, total cholesterol, apolipoprotein B, and non-high-density lipoprotein (non-HDL) cholesterol in patients with homozygous familial hypercholesterolemia (HoFH). On 31 May 2013 the European Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion with a unanimous vote recommending a marketing authorization for lomitapide. On 31 July 2013 the European Commission approved lomitapide as an adjunct to a low-fat diet and other lipid-lowering medicinal products with or without low density lipoprotein (LDL) apheresis in adult patients with HoFH. UXTAPID directly binds and inhibits microsomal triglyceride transfer protein (MTP), which resides in the lumen of the endoplasmic reticulum, thereby preventing the assembly of apo B containing lipoproteins in enterocytes and hepatocytes. This inhibits the synthesis of chylomicrons and VLDL. The inhibition of the synthesis of VLDL leads to reduced levels of plasma LDL-C.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Velpatasvir (VEL; GS-5816) is an inhibitor of HCV NS5A protein, it demonstrated favourable in vitro and in vivo properties, including potent antiviral activity against hepatitis C virus genotypes 1 to 6 replicon, good metabolic stability, low systemic clearance, and adequate bioavailability and physicochemical properties to warrant clinical evaluation. Velpatasvir is used together with sofosbuvir in the treatment of hepatitis C infection of all six major genotypes. A once-daily, single-tablet, pangenotypic regimen comprising the HCV NS5B polymerase inhibitor sofosbuvir and the HCV NS5A inhibitor velpatasvir (sofosbuvir/ velpatasvir; Epclusa) has recently been approved for the treatment of adults with chronic HCV genotype 1, 2, 3, 4, 5 or 6 infection in the USA, EU and Canada.
Venetoclax (trade name Venclexta, also known as ABT-199) is a selective and orally bioavailable small-molecule inhibitor of BCL-2, an antiapoptotic protein. BCL-2 and its related proteins BCL-XL and MCL-1 bind to and sequester pro-apoptotic signals in the cell, causing a down-regulation of apoptosis. As an oncogene and an important regulator of apoptosis, BCL-2 overexpression therefore results in increased tumor cell survival and resistance to chemotherapy. FDA approved Venetoclax in April 2016 for the treatment of patients with chronic lymphocytic leukemia (CLL) with 17p deletion, as detected by an FDA approved test, who have received at least one prior therapy. Also this drug in phase 3 clinical trial in combination therapy for the treatment patients with refractory myeloma and Acute Myeloid Leukemia. Common side effects include neutropenia, nausea, anemia, diarrhea, upper respiratory tract infection. Major side effects include tumor lysis syndrome and severe neutropenia.
Isavuconazole is an active form of isavuconazonium, a prodrug which is marketed under the name Cresemba. Isavuconazole inhibits lanosterol 14-alpha demethylase (or CYP51A1) and leads to the accumulation of ergosterol toxic precursors in the fungal cytoplasm. Isavuconazole is indicated for the treatment of invasive aspergillosis and invasive mucormycosis.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ledipasvir is an inhibitor of the Hepatitis C Virus (HCV) NS5A protein required for viral RNA replication and assembly of HCV virions. Approved in October 2014 by the FDA, ledipasvir and sofosbuvir (tradename Harvoni) are direct-acting antiviral agents indicated for the treatment of HCV genotype 1 with or without cirrhosis.
Fosnetupitant is a prodrug form of netupitant. Netupitant is a selective antagonist of human substance P/neurokinin 1 (NK-1) receptors. Upon intravenous administration, fosnetupitant is converted by phosphatases to its active form. It competitively binds to and blocks the activity of NK-1 receptors in the central nervous system, by inhibiting binding of substance P (SP) to NK-1 receptors. This prevents delayed emesis, which is associated with SP secretion. AKYNZEO® is a combination of palonosetron, a serotonin-3 receptor antagonist, and netupitant (capsules for oral use) or fosnetupitant (injections for intravenous use). AKYNZEO® for injection is indicated in combination with dexamethasone in adults for the prevention of acute and delayed nausea and vomiting associated with initial and repeat courses of highly emetogenic cancer chemotherapy.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Eliglustat, marketed by Genzyme as CERDELGA, is a glucosylceramide synthase inhibitor indicated for the long-term treatment of type 1 Gaucher disease who are CYP2D6 extensive metabolizers, intermediate metabolizers, or poor metabolizers (PMs) as detected by an FDA-cleared test.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cobicistat (GS-9350) is a potent, and selective inhibitor of human cytochrome P450 3A (CYP3A) enzymes. Cobicistat is a pharmacokinetic booster of several antiretrovirals. TYBOST (cobicistat) is indicated to increase systemic exposure of atazanavir or darunavir in combination with other antiretroviral agents in the treatment of HIV-1 infection.
Bosutinib (trade name Bosulif) originally synthesized by Wyeth, it is being developed by Pfizer. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy. Bosutinib is a synthetic quinolone derivative and dual kinase inhibitor that targets both Abl and Src kinases with potential antineoplastic activity. Unlike imatinib, bosutinib inhibits the autophosphorylation of both Abl and Src kinases, resulting in inhibition of cell growth and apoptosis. Because of the dual mechanism of action, this agent may have activity in resistant CML disease, other myeloid malignancies and solid tumors. Abl kinase is upregulated in the presence of the abnormal Bcr-abl fusion protein which is commonly associated with chronic myeloid leukemia (CML). Overexpression of specific Src kinases is also associated with the imatinib-resistant CML phenotype.
(S)-crizotinib was discovered as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 as a promising novel class of anticancer agents.