U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for fesoterodine

 
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Dimethyl maleate is an organic compound, the (Z)-isomer of the dimethyl ester of fumaric acid. Dimethyl maleate can be synthesized from maleic anhydride and methanol, with sulfuric acid acting as acid catalyst, via a nucleophilic acyl substitution for the monomethyl ester, followed by a Fischer esterification reaction for the dimethyl ester. Dimethyl maleate is used in many organic syntheses as a dienophile for diene synthesis. It is used as an additive and intermediate for plastics, pigments, pharmaceuticals, and agricultural products. It is also an intermediate for the production of paints, adhesives, and copolymers.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.
Desfesoterodine is an active metabolite of antimuscarinic drugs for the treatment of overactive bladder fesoterodine and tolterodine. In contrast to the cytochrome P450 (CYP) 2D6-mediated metabolism of tolterodine, desfesoterodine formation from fesoterodine occurs via ubiquitous nonspecific esterases. Serum levels of the desfesoterodine in humans are generally comparable to those of tolterodine following oral administration of the parent compound. The pharmacological in vitro and in vivo profiles of desfesoterodine are almost identical to those of tolterodin. The potent antimuscarinic action of desfesoterodine on the urinary bladder was confirmed in the in vivo studies and, like tolterodine, desfesoterodine was significantly more potent in inhibiting bladder contractions than salivation in the anaesthetised cat. Desfesoterodine is more potent than tolterodine in vivo. The apparent difference in potency in vivo might be explained by the degree of serum protein binding of the two compounds. The fraction of unbound drug in serum is larger for desfesoterodine than for tolterodine. Desfesoterodine may contribute to the therapeutical action of tolterodine.