U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for ciprofloxacin

 
Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.

Showing 1 - 10 of 35 results

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid) is the synthetic antimicrobial agent for oral or intravenous administration. Ciprofloxacin is a member of the fluoroquinolone class of antibacterial agents. The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV (both Type II topoisomerases), which are required for bacterial DNA replication, transcription, repair, and recombination. Ciprofloxacin is used to treat a wide variety of infections, including infections of bones and joints, endocarditis, gastroenteritis, malignant otitis externa, respiratory tract infections, cellulitis, urinary tract infections, prostatitis, anthrax, and chancroid. In the United States, ciprofloxacin is pregnancy category C. This category includes drugs for which no adequate and well-controlled studies in human pregnancy exist, and for which animal studies have suggested the potential for harm to the fetus, but potential benefits may warrant use of the drug in pregnant women despite potential risks. Fluoroquinolones have been reported as present in a mother's milk and thus passed on to the nursing child. Oral and intravenous ciprofloxacin is approved by the FDA for use in children for only two indications due to the risk of permanent injury to the musculoskeletal system: Inhalational anthrax (postexposure) and Complicated urinary tract infections and pyelonephritis due to Escherichia coli.

Class (Stereo):
CHEMICAL (ACHIRAL)

Targets:


Tinidazole is a synthetic antiprotozoal agent, formally known as 1-[2-(ethylsulfonyl)ethyl]-2-methyl-5-nitroimidazole and a second-generation 2-methyl-5-nitroimidazole. Tinidazole is a prodrug and antiprotozoal agent. The nitro group of tinidazole is reduced in Trichomonas by a ferredoxin-mediated electron transport system. The free nitro radical generated as a result of this reduction is believed to be responsible for the antiprotozoal activity. It is suggested that the toxic free radicals covalently bind to DNA, causing DNA damage and leading to cell death. The mechanism by which tinidazole exhibits activity against Giardia and Entamoeba species is not known. Tindamax oral tablets are indicated for the treatment of trichomoniasis caused by T. vaginalis in both female and male patients assuming the organism has been identified by appropriate diagnostic procedures. Because trichomoniasis is a sexually transmitted disease with potentially serious sequelae, partners of infected patients should be treated simultaneously in order to prevent re-infection. Tindamax oral tablets are also indicated for the treatment of giardiasis caused by G. duodenalis (also termed G. lamblia) in both adults and pediatric patients older than three years of age. Another indication for Tindamax oral tablets is the treatment of intestinal amebiasis and amebic liver abscess caused by E. histolytica in both adults and pediatric patients older than three years of age. It is not indicated in the treatment of asymptomatic cyst passage. The most common side effects reported with tinidazole are upset stomach, bitter taste and itchiness. Other side effects include headache, physical fatigue, and dizziness. Anecdotally, people who have taken both metronidazole and tinidazole report toxicity is much the same except the side effects don't last as long with the latter. Drinking alcohol while taking tinidazole causes an unpleasant disulfiram-like reaction which includes nausea, vomiting, headache, increased blood pressure, flushing, and shortness of breath.
Moxifloxacin is a synthetic antibacterial agent developed by Bayer AG (initially called BAY 12-8039) for oral and intravenous administration. Moxifloxacin, a fluoroquinolone, is available as the monohydrochloride salt of 1-cyclopropyl-7-[(S,S)-2,8diazabicyclo[4.3.0]non-8-yl]-6-fluoro-8-methoxy-1,4-dihydro-4-oxo-3 quinoline carboxylic acid. Moxifloxacin is marketed worldwide (as the hydrochloride) under the brand names Avelox, Avalox, and Avalon for oral treatment. In most countries, the drug is also available in the parenteral form for intravenous infusion. Moxifloxacin is also sold in an ophthalmic solution (eye drops) under the brand names Vigamox, and Moxeza for the treatment of conjunctivitis (pink eye). Its antibacterial spectrum includes enteric Gram-(−) rods (Escherichia coli, Proteus species, Klebsiella species), Haemophilus influenzae, atypical bacteria (Mycoplasma, Chlamydia, Legionella), and Streptococcus pneumoniae, and anaerobic bacteria. It differs from earlier antibacterials of the fluoroquinolone class such as levofloxacin and ciprofloxacin in having greater activity against Gram-positive bacteria and anaerobes.
Metronidazole was synthesized by France's Rhone-Poulenc laboratories and introduced in the mid-1950s under the brand name Flagel in the US, while Sanofi-Aventis markets metronidazole globally under the same trade name, Flagyl, and also by various generic manufacturers. Metronidazole is one of the rare examples of a drug developed as ant parasitic, which has since gained broad use as an antibacterial agent. Metronidazole, a nitroimidazole, exerts antibacterial effects in an anaerobic environment against most obligate anaerobes. Metronidazole is indicated for the treatment of the following infections due to susceptible strains of sensitive organisms: Trichomoniasis: symptomatic, asymptomatic, asymptomatic consorts; Amebiasis: acute intestinal amebiasis (amebic dysentery) and amebic liver abscess; Anaerobic bacterial infections; Intra-abdominal infections, including peritonitis, intra-abdominal abscess, and liver abscess; Skin and skin structure infections; Gynecologic infections, including endometritis, endomyometritis, tubo-ovarian abscess, and postsurgical vaginal cuff infection; Bacterial septicemia; Bone and joint infections, as adjunctive therapy; Central Nervous System infections, including meningitis and brain abscess; Lower Respiratory Tract infections, including pneumonia, empyema, and lung abscess; Endocarditis. Metronidazole is NOT effective for infections caused by aerobic bacteria that can survive in the presence of oxygen. Metronidazole is only effective against anaerobic bacterial infections because the presence of oxygen will inhibit the nitrogen-reduction process that is crucial to the drug's mechanism of action. Once metronidazole enters the organism by passive diffusion and activated in the cytoplasm of susceptible anaerobic bacteria, it is reduced; this process includes intracellular electron transport proteins such as ferredoxin, transfer of an electron to the nitro group of the metronidazole, and formation of a short-lived nitroso free radical. Because of this alteration of the metronidazole molecule, a concentration gradient is created and maintained which promotes the drug’s intracellular transport. The reduced form of metronidazole and free radicals can interact with DNA leading to inhibition of DNA synthesis and DNA degradation leading to death of the bacteria. The precise mechanism of action of metronidazole is unknown. Metronidazole has a limited spectrum of activity that encompasses various protozoans and most Gram-negative and Gram-positive anaerobic bacteria. Metronidazole has activity against protozoans like Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis, for which the drug was first approved as an effective treatment.
Status:
First marketed in 1921
Source:
Lactic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)