{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
carfilzomib
to a specific field?
There is one exact (name or code) match for carfilzomib
Status:
US Approved Rx
(2012)
Source:
NDA202714
(2012)
Source URL:
First approved in 2012
Source:
NDA202714
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Carfilzomib is an epoxomicin derivate with potential antineoplastic activity. Kyprolis (carfilzomib's trade name) is a proteasome inhibitor that is indicated for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy as a single agent or in combination with dexamethasone or with lenalidomide plus dexamethasone. Carfilzomib is made up of four modified peptides. It irreversibly and selectively binds to N-terminal threonine-containing active sites of the 20S proteasome, the proteolytic core particle within the 26S proteasome. This 20S core has 3 catalytic active sites: the chymotrypsin, trypsin, and caspase-like sites. Inhibition of the chymotrypsin-like site by carfilzomib (β5 and β5i subunits) is the most effective target in decreasing cellular proliferation, ultimately resulting in cell cycle arrest and apoptosis of cancerous cells. At higher doses, carfilzomib will inhibit the trypsin-and capase-like sites. Inhibition of proteasome-mediated proteolysis results in an accumulation of polyubiquinated proteins, which may lead to cell cycle arrest, induction of apoptosis, and inhibition of tumor growth.
Status:
US Approved Rx
(2012)
Source:
NDA202714
(2012)
Source URL:
First approved in 2012
Source:
NDA202714
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Carfilzomib is an epoxomicin derivate with potential antineoplastic activity. Kyprolis (carfilzomib's trade name) is a proteasome inhibitor that is indicated for the treatment of patients with relapsed or refractory multiple myeloma who have received one or more lines of therapy as a single agent or in combination with dexamethasone or with lenalidomide plus dexamethasone. Carfilzomib is made up of four modified peptides. It irreversibly and selectively binds to N-terminal threonine-containing active sites of the 20S proteasome, the proteolytic core particle within the 26S proteasome. This 20S core has 3 catalytic active sites: the chymotrypsin, trypsin, and caspase-like sites. Inhibition of the chymotrypsin-like site by carfilzomib (β5 and β5i subunits) is the most effective target in decreasing cellular proliferation, ultimately resulting in cell cycle arrest and apoptosis of cancerous cells. At higher doses, carfilzomib will inhibit the trypsin-and capase-like sites. Inhibition of proteasome-mediated proteolysis results in an accumulation of polyubiquinated proteins, which may lead to cell cycle arrest, induction of apoptosis, and inhibition of tumor growth.
Status:
US Approved Rx
(2015)
Source:
NDA208462
(2015)
Source URL:
First approved in 2015
Source:
NDA208462
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ixazomib (trade name Ninlaro) is a drug for the treatment of multiple myeloma in adults after at least one prior therapy, in combination with lenalidomide and dexamethasone. It is taken by mouth in form of capsules. Common side effects include diarrhea, constipation and low platelet count. Like the older bortezomib (which can only be given by injection), it acts as a proteasome inhibitor, has orphan drug status in the US and Europe. At therapeutic concentrations, ixazomib selectively and reversibly inhibits the protein proteasome subunit beta type-5 (PSMB5) with a dissociation half-life of 18 minutes. This mechanism is the same as of bortezomib, which has a much longer dissociation half-life of 110 minutes; the related drug carfilzomib, by contrast, blocks PSMB5 irreversibly. Proteasome subunits beta type-1 and type-2 are only inhibited at high concentrations reached in cell culture models. PSMB5 is part of the 20S proteasome complex and has enzymatic activity similar to chymotrypsin. It induces apoptosis, a type of programmed cell death, in various cancer cell lines. A synergistic effect of ixazomib and lenalidomide has been found in a large number of myeloma cell lines. The medication is taken orally as a prodrug, ixazomib citrate, which is a boronic ester; this ester rapidly hydrolyzes under physiological conditions to its biologically active form, ixazomib, a boronic acid. Absolute bioavailability is 58%, and highest blood plasma concentrations of ixazomib are reached after one hour. Plasma protein binding is 99%.
Status:
US Previously Marketed
Source:
UKONIQ by TG THERAPS
(2021)
Source URL:
First approved in 2021
Source:
UKONIQ by TG THERAPS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Umbralisib (TGR-1202) is an orally available PI3K delta inhibitor, targeting the delta isoform with nanomolar potency and several fold selectivity over the alpha, beta, and gamma isoforms of PI3K. The delta isoform of PI3K is strongly expressed in cells of hematopoietic origin and is believed to be important in the proliferation and survival of B-cell lymphocytes. Inhibition of PI3K delta signaling with umbralisib has demonstrated robust activity in numerous pre-clinical models and primary cells from patients with hematologic malignancies. Umbralisib is currently in Phase 3 clinical development in combination with Ublituximab for patients with hematologic malignancies.
Status:
Possibly Marketed Outside US
Source:
Octaplasma by Octapharma Pharmazeutika Produktionsges M B H [Canada]
Source URL:
First approved in 2013
Source:
BLA125416
Source URL:
Class:
MIXTURE