U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

There is one exact (name or code) match for calcifediol

 
Calcifediol (25-Hydroxyvitamin D3 or 25-hydroxycholecalciferol) is a biologically active vitamin D3 metabolite. It is concluded that the liver is the major if not the only physiologic site of hydroxylation of vitamin D3 into calcifediol. Calcifediol is a prohormone of the active form of vitamin D3, calcitriol (1,25-dihydroxyvitamin D3). Calcifediol is converted to calcitriol by cytochrome P450 27B1 (CYP27B1), also called 1-alpha hydroxylase, primarily in the kidney. Calcitriol binds to the vitamin D receptor in target tissues and activates vitamin D responsive pathways that result in increased intestinal absorption of calcium and phosphorus and reduced parathyroid hormone synthesis. RAYALDEE (calcifediol) extended-release capsules is indicated for the treatment of secondary hyperparathyroidism in adult patients with stage 3 or 4 chronic kidney disease.

Showing 1 - 10 of 15 results

Calcifediol (25-Hydroxyvitamin D3 or 25-hydroxycholecalciferol) is a biologically active vitamin D3 metabolite. It is concluded that the liver is the major if not the only physiologic site of hydroxylation of vitamin D3 into calcifediol. Calcifediol is a prohormone of the active form of vitamin D3, calcitriol (1,25-dihydroxyvitamin D3). Calcifediol is converted to calcitriol by cytochrome P450 27B1 (CYP27B1), also called 1-alpha hydroxylase, primarily in the kidney. Calcitriol binds to the vitamin D receptor in target tissues and activates vitamin D responsive pathways that result in increased intestinal absorption of calcium and phosphorus and reduced parathyroid hormone synthesis. RAYALDEE (calcifediol) extended-release capsules is indicated for the treatment of secondary hyperparathyroidism in adult patients with stage 3 or 4 chronic kidney disease.
Paricalcitol (Zemplar) is a synthetic vitamin D(2) analogue that inhibits the secretion of parathyroid hormone (PTH) through binding to the vitamin D receptor. It is approved in the US and in most European nations for intravenous use in the prevention and treatment of secondary hyperparathyroidism associated with chronic renal failure in adult, and in the US paediatric, patients. Paricalcitol effectively reduced elevated serum PTH levels and was generally well tolerated in children and adults with secondary hyperparathyroidism associated with chronic renal failure. In well designed clinical trials, paricalcitol was as effective as calcitriol and as well tolerated in terms of the incidence of prolonged hypercalcaemia and/or elevated calcium-phosphorus product (Ca x P). Preclinical and in vitro studies have demonstrated that paricalcitol's biological actions are mediated through binding of the vitamin D receptor, which results in the selective activation of vitamin D responsive pathways. Vitamin D and paricalcitol have been shown to reduce parathyroid hormone levels by inhibiting PTH synthesis and secretion.
Calcifediol (25-Hydroxyvitamin D3 or 25-hydroxycholecalciferol) is a biologically active vitamin D3 metabolite. It is concluded that the liver is the major if not the only physiologic site of hydroxylation of vitamin D3 into calcifediol. Calcifediol is a prohormone of the active form of vitamin D3, calcitriol (1,25-dihydroxyvitamin D3). Calcifediol is converted to calcitriol by cytochrome P450 27B1 (CYP27B1), also called 1-alpha hydroxylase, primarily in the kidney. Calcitriol binds to the vitamin D receptor in target tissues and activates vitamin D responsive pathways that result in increased intestinal absorption of calcium and phosphorus and reduced parathyroid hormone synthesis. RAYALDEE (calcifediol) extended-release capsules is indicated for the treatment of secondary hyperparathyroidism in adult patients with stage 3 or 4 chronic kidney disease.
Trans-calcitriol or Calcitriol Impurity A, is the impurity of Calcitriol. Calcitriol is the hormonally active form of vitamin D, Calcitriol is the active metabolite of vitamin D3 that activates the vitamin D receptor (VDR). Calcitriol Impurity A is the physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption.
Ergoalcifediol (Vitamin D2) is a fat soluble steroid hormone precursor of vitamin D. The principal biologic function of vitamin D is the maintenance of normal levels of serum calcium and phosphorus in the bloodstream by enhancing the efficacy of the small intestine to absorb these minerals from the diet. Cholecalciferol is synthesized within our bodies naturally, but if UV exposure is inadequate or the metabolism of cholecalciferol is abnormal, then an exogenous source is required. Vitamin D2 is converted to 25-hydroxyvitamin D (25OHD) in the liver, and then to the active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), in the kidney. Once transformed, it binds to the vitamin D receptor, which leads to a variety of regulatory roles. Vitamin D plays an important role in maintaining calcium balance and in the regulation of parathyroid hormone (PTH). It promotes renal reabsorption of calcium, increases intestinal absorption of calcium and phosphorus, and increases calcium and phosphorus mobilization from bone to plasma. Very few foods naturally contain vitamin D. Sources that contain the vitamin include fatty fish, the liver and fat of aquatic mammals (e.g., seals, polar bears), and eggs from chickens fed vitamin D-fortified feed. As such, many countries have instituted policies to fortify certain foods with vitamin D to compensate for the potentially low exposures of skin to sunlight. Vitamin D deficiency results in inadequate mineralization of bone or compensatory skeletal demineralization and causes decreased ionized calcium concentrations in blood and a resultant increase in the production and secretion of PTH. Increase in PTH stimulates the mobilization of skeletal calcium, inhibits renal excretion of calcium, and stimulates renal excretion of phosphorus. This results in normal fasting serum calcium concentrations and low or near-normal serum phosphorus. The enhanced mobilization of skeletal calcium induced by this secondary hyperparathyroidism leads porotic bone. Ergoalcifediol is used for use in the management of hypocalcemia and its clinical manifestations in patients with hypoparathyroidism, as well as for the treatment of familial hypophosphatemia (vitamin D resistant rickets). This drug has also been used in the treatment of nutritional rickets or osteomalacia, vitamin D dependent rickets, rickets or osteomalacia secondary to long-term high dose anticonvulsant therapy, early renal osteodystrophy, osteoporosis (in conjunction with calcium), and hypophosphatemia associated with Fanconi syndrome (with treatment of acidosis). Ergocalciferol is manufactured and marketed under various names, including Deltalin (Eli Lilly and Company), Drisdol (Sanofi-Synthelabo) and Calcidol (Patrin Pharma).
Status:
First marketed in 1921
Source:
vitamin D
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cholecalciferol (/ˌkoʊləkælˈsɪfərɒl/) (vitamin D3) is one of the five forms of vitamin D. Cholecalciferol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, in mineralization of bone, and for the assimilation of Vitamin A. The classical manifestation of vitamin D deficiency is rickets, which is seen in children and results in bony deformities including bowed long bones. Most people meet at least some of their vitamin D needs through exposure to sunlight. Ultraviolet (UV) B radiation with a wavelength of 290–320 nanometers penetrates uncovered skin and converts cutaneous 7-dehydrocholesterol to previtamin D3, which in turn becomes vitamin D3. In supplements and fortified foods, vitamin D is available in two forms, D2 (ergocalciferol) and D3 (cholecalciferol) that differ chemically only in their side-chain structure. Vitamin D2 is manufactured by the UV irradiation of ergosterol in yeast, and vitamin D3 is manufactured by the irradiation of 7-dehydrocholesterol from lanolin and the chemical conversion of cholesterol. The two forms have traditionally been regarded as equivalent based on their ability to cure rickets and, indeed, most steps involved in the metabolism and actions of vitamin D2 and vitamin D3 are identical. Both forms (as well as vitamin D in foods and from cutaneous synthesis) effectively raise serum 25(OH) D levels. Firm conclusions about any different effects of these two forms of vitamin D cannot be drawn. However, it appears that at nutritional doses, vitamins D2 and D3 are equivalent, but at high doses, vitamin D2 is less potent. The American Academy of Pediatrics (AAP) recommends that exclusively and partially breastfed infants receive supplements of 400 IU/day of vitamin D shortly after birth and continue to receive these supplements until they are weaned and consume ≥1,000 mL/day of vitamin D-fortified formula or whole milk. Cholecalciferol is used in diet supplementary to treat Vitamin D Deficiency. Cholecalciferol is inactive: it is converted to its active form by two hydroxylations: the first in the liver, the second in the kidney, to form calcitriol, whose action is mediated by the vitamin D receptor, a nuclear receptor which regulates the synthesis of hundreds of enzymes and is present in virtually every cell in the body. Calcitriol increases the serum calcium concentrations by increasing GI absorption of phosphorus and calcium, increasing osteoclastic resorption, and increasing distal renal tubular reabsorption of calcium. Calcitriol appears to promote intestinal absorption of calcium through binding to the vitamin D receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein.
Status:
Investigational
Source:
NCT03576716: Phase 1 Interventional Completed Chronic Kidney Disease
(2018)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Showing 1 - 10 of 15 results