U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 961 - 970 of 2615 results

Clonidine is a centrally acting α2 adrenergic agonist and imidazoline receptor agonist used to treat high blood pressure, attention deficit hyperactivity disorder, anxiety disorders, tic disorders, withdrawal (from either alcohol, opioids, or smoking), migraine, menopausal flushing, diarrhea, and certain pain conditions. Clonidine treats high blood pressure by stimulating α2 receptors in the brain, which decreases peripheral vascular resistance, lowering blood pressure. It has specificity towards the presynaptic α2 receptors in the vasomotor center in the brainstem. This binding decreases presynaptic calcium levels, thus inhibiting the release of norepinephrine (NE). It has also been proposed that the antihypertensive effect of clonidine is due to agonism on the I1 receptor (imidazoline receptor), which mediates the sympatho-inhibitory actions of imidazolines to lower blood pressure. Clonidines mechanism of action in the treatment of ADHD is to increase noradrenergic tone in the prefrontal cortex (PFC) directly by binding to postsynaptic α2A adrenergic receptors and indirectly by increasing norepinephrine input from the locus coeruleus. Clonidine indicated in the treatment of hypertension. Clonidine hydrochloride tablets may be employed alone or concomitantly with other antihypertensive agents. The US Food and Drug Administration (FDA) has approved clonidine for the treatment of attention deficit hyperactivity disorder (ADHD), under the trade name of Kapvay alone or with stimulants in 2010, for pediatric patients aged 6–17 years.
Status:
First approved in 1974

Class (Stereo):
CHEMICAL (OCTAHEDRAL 22)


Nitroprusside is a medication which is used to lower blood pressure. It is comprised of a ferrous ion complexed with five cyanide and one nitrosyl group. Upon intravenous infusion, nitroprusside interacts with oxyhemoglobin and dissociates, releasing cyanide and nitric oxide, which act as a powerful vasodilating agent. Sodium nitroprusside was approved by the FDA in 1974 and is indicated for the immediate reduction of blood pressure of adult and pediatric patients in hypertensive crises. Sodium Nitroprusside injection is also indicated for producing controlled hypotension in order to reduce bleeding during surgery, and for the treatment of acute congestive heart failure.
Technetium TC 99M Pyrophosphate is a radionuclide imaging agent used primarily in scintigraphy or tomography of the heart to evaluate the extent of the necrotic myocardial process. It has also been used in noninvasive tests for the distribution of organ involvement in different types of amyloidosis and for the evaluation of muscle necrosis in the extremities. It is also used to demonstrate areas of altered osteogenesis. May also be used to image gated blood pools and detect gastrointetinal bleeding.

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Molybdenum-99 (99Mo, half-life = 66 h) is a parent radionuclide of a diagnostic nuclear isotope. It decays in technetium-99 m (half-life = 6 h), which is used in over 30 million procedures per year around the world. Between 95 and 98 percent of Mo-99 is currently being produced using highly enriched uranium (HEU) targets. Other medical isotopes such as iodine-131 (I-131) and xenon-133 (Xe-133) are by-products of the Mo-99 production process and will be sufficiently available if Mo-99 is available.
Cromolyn is a mast cell stabilizer. In vitro and in vivo animal studies have shown that cromolyn sodium inhibits the degranulation of sensitized mast cells, which occurs after exposure to specific antigens. Cromolyn sodium acts by inhibiting the release of histamine and SRS-A (slow-reacting substance of anaphylaxis) from the mast cell. Cromolyn is indicated in the management of patients with mastocytosis, prophylaxis (long-term control) of bronchial asthma, prevention of exercise-induced bronchospasm, prevention and treatment of seasonal and perennial allergic rhinitis The most frequently reported adverse reactions attributed to cromolyn sodium treatment were: throat irritation or dryness, bad taste, cough, wheeze, nausea.
Amoxicillin is one of the widely prescribed antibacterial agents, which was discovered by scientists at Beecham Research Laboratories in 1972. In the US GlaxoSmithKline markets it under the original brand name Amoxil. It is the first line treatment for middle ear infections. It is also used for strep throat, pneumonia, skin infections, and urinary tract infections it is taken by mouth. Amoxicillin inhibits the third and final stage of bacterial cell wall synthesis by preferentially binding to specific penicillin-binding proteins (PBPs) that are located inside the bacterial cell wall. This results in a formation of defective cell wall and a cell death. Common side effects include nausea and rash. It may also increase the risk of yeast infections and, when used in combination with clavulanic acid, diarrhea. It should not be used in those who are allergic to penicillin.
Status:
First approved in 1973
Source:
Pondimin by Robins
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Fenfluramine (former brand names Pondimin, Ponderax and Adifax), also known as 3-trifluoromethyl-N-ethylamphetamine, is an anorectic that is no longer marketed. In combination with phentermine, it was part of the anti-obesity medication Fen-phen. Fenfluramine was introduced on the U.S. market in 1973 and withdrawn in 1997. It is the racemic mixture of two enantiomers, dexfenfluramine, and levofenfluramine. The drug increases the level of serotonin, a neurotransmitter that regulates mood, appetite and other functions. Fenfluramine causes the release of serotonin by disrupting vesicular storage of the neurotransmitter and reversing serotonin transporter function. The drug was withdrawn from the U.S. market in 1997 after reports of heart valve disease and pulmonary hypertension, including a condition known as cardiac fibrosis. It was subsequently withdrawn from other markets around the world. In this small exploratory and retrospective study, remarkably good results were reported on the use of fenfluramine as an add-on medication for controlling seizures in patients with the Dravet syndrome. The side effects were rare and nonserious and did not result in termination of the treatment. It is possible that this drug may have anticonvulsive effects for other severe epilepsy syndromes, especially in those characterized by photosensitive or induced seizures.
Status:
US Approved Rx (1997)
Source:
BLA103738
(1997)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Ethylparaben is produced naturally and found in several fruits and insects, where it acts as an antimicrobial agent. Ethylparaben is mainly used as antiseptics in cosmetics, food and medicine (E number E214). It is also can be used as feed preservatives and antiseptic for bacteria. Ethylparaben is readily absorbed from the gastrointestinal tract or through the skin. It is hydrolyzed to p-hydroxybenzoic acid and rapidly excreted in urine without accumulating in the body. Under the Federal Food, Drug, and Cosmetic Act (FD&C Act), cosmetic products and ingredients, other than color additives, do not need FDA approval before they go on the market. Broad concentration ranges reported in each product category in 1981 were < 0.1% and > 0.1% to 1%. Studies show the in vivo estrogenicity of MP and EP at human exposure levels, and indicate that populations exposed to large amounts of MP and EP may have a high burden of estrogenicity-related diseases.
Trimethoprim (TMP) is an antibiotic is used for the treatment of initial episodes of uncomplicated urinary tract infections due to susceptible strains of the following organisms: Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Enterobacter species, and coagulase-negative Staphylococcus species, including S. saprophyticus. Cultures and susceptibility tests should be performed to determine the susceptibility of the bacteria to trimethoprim. Therapy may be initiated prior to obtaining the results of these tests. Trimethoprim is rapidly absorbed following oral administration. It exists in the blood as unbound, protein-bound, and metabolized forms. Ten to twenty percent of trimethoprim is metabolized, primarily in the liver; the remainder is excreted unchanged in the urine. The principal metabolites of trimethoprim are the 1- and 3-oxides and the 3'- and 4'-hydroxy derivatives. The free form is considered to be the therapeutically active form. Approximately 44% of trimethoprim is bound to plasma proteins. Trimethoprim blocks the production of tetrahydrofolic acid from dihydrofolic acid by binding to and reversibly inhibiting the required enzyme, dihydrofolate reductase. This binding is very much stronger for the bacterial enzyme than for the corresponding mammalian enzyme