{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for mefenamic root_Display\ Name in Display Name (approximate match)
Class (Stereo):
CHEMICAL (RACEMIC)
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
NCT00966914: Phase 3 Interventional Completed Non-small Cell Lung Cancer
(2010)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Dimesna is a prodrug of mesna (dimer of mesna). Dimesna is reduced to mesna in the kidneys. Dimesna does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in the renal tubular cell line LLC-PK1. Dimesna is a mucolytic agent used to alleviate toxic side effects of antitumor drugs. The organic acid transporter OAT4 on the luminal side of the proximal renal tubule facilitates the reabsorption of dimesna, and therefore its reduction to mesna, whereas the multidrug and toxin extrusion protein MATE1, the multidrug resistance protein MRP2, and P glycoprotein facilitate the efflux of mesna and/or dimesna back into the lumen; dimesna may also be excreted unchanged by MRP4. It has therefore been suggested that polymorphism of these renal transport proteins or transporter-mediated drug-drug interactions may reduce the efficacy of mesna and dimesna.
Status:
Investigational
Source:
NCT00942656: Not Applicable Interventional Completed Cardiovascular Disease
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Rumenic acid is the major conjugated linoleic acid (CLA), probably because of successive desaturation and chain elongation and can be considered as the principal dietary form. In experiments on rodents was shown that rumenic acid possessed the protective effect against colitis, which was associated with the activation of the Nrf2 pathway.
Status:
Investigational
Source:
J Drug Target. Jan 2009;17(1):36-63.: Phase 2 Human clinical trial Completed Cataract/complications/diagnosis/physiopathology
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Investigational
Source:
NCT02929901: Phase 2/Phase 3 Interventional Completed Type 2 Diabetes Nonalcoholic Fatty Liver
(2016)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Chlorogenic acid is the ester of caffeic acid and (-)-quinic acid. Chlorogenic acid is a naturally occurring plant metabolite and can be found with the related compounds cryptochlorgenic acid and neochlorogenic acid in the leaves of Hibiscus sabdariffa, coffee, potato, eggplant, peaches, and prunes. Chlorogenic acid has been investigated as a dietary supplement to improve glucose intolerant hypoglycemia and non-alcoholic fatty liver disease. It has also been identified as a potential anticancer agent by reducing the expression of HIF-1a and Sphingosine Kinase-1. Chlorogenic acid was also identified as a neuraminidase blocker effective against influenza A virus (H1N1 and H3N2).
Status:
Investigational
Source:
USAN:SULFANILATE ZINC [USAN]
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Sodium sulfanilate is a salt of sulphanilic acid and has been used to monitor the degree of renal dysfunction in dogs.
Status:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Gadocoletic acid (also Gadoletic acid trisodium salt, or B22956/1) is a magnetic resonance contrast agent. Based on results from animal imaging experiments and pharmacokinetic data it was suggested that gadocoletic acid trisodium salt has strong potential for clinical use in Magnetic Resonance Coronary Angiography and Myocardial Perfusion Imaging. The small molecules of gadocoletic acid are bound after injection to large human serum albumin molecules in coronary vessels with the result of high vessel/muscle contrast. The ability of B229563− (anion) to bind to more than one site on the albumin molecule allows a positive correlation between dose and blood relaxation rate enhancement at doses higher than 0.05 mmol/kg, the dose that produces roughly a total plasma concentration equimolar to the albumin concentration at equilibrium distribution. Gadocoletic acid is thought to be highly efficacious in inversion recovery-prepared 3D gradient-recalled echo, navigator echo-gated coronary angiography in humans already at doses below 0.1 mmol/kg.
Status:
Investigational
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
4,4’-Diamino-2,2’-stilbenedisulfonic acid (also known as amsonic acid) is used in the synthesis of dyes and optical brighteners or fluorescent whitening agents. Amsonic acid possesses estrogenic activity, and thus provided a possible mechanistic explanation for the complaints of impotency in factory workers exposed to this compound. In the 2-year feed studies on rodents, there was no evidence of carcinogenic activity of amsonic acid, in male or female F344/N rats receiving 12,500 or 25,000 ppm. In addition, there was no evidence of carcinogenic activity of this compound in male or female B6C3F1 mice receiving 6,250 or 12,500 ppm.
Status:
Investigational
Source:
NCT00942656: Not Applicable Interventional Completed Cardiovascular Disease
(2009)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Vaccenic acid (VA) (t11 octadecenoic acid) is a positional and geometric isomer of oleic acid (c9-octadecenoic acid), and is the predominant trans monoene in ruminant fats (50%–80% of total trans content). Dietary VA can be desaturated to cis-9,trans-11 conjugated
linoleic acid (c9,t11-CLA) in ruminants, rodents,
and humans. Hydrogenated plant oils are another source of VA in
the diet, and it has been recently estimated that this source
may contribute to about 13%–17% of total VA intake. In contrast to suggestions from the epidemiological studies,
the majority of studies using cancer cell lines (Awad et
al. 1995; Miller et al. 2003) or rodent tumors (Banni et al.
2001; Corl et al. 2003; Ip et al. 1999; Sauer et al. 2004)
have demonstrated that VA reduces cell growth and (or) tumor
metabolism. Animal and in vitro studies suggest that
the anti-cancer properties of VA are due, in part, to the in
vivo conversion of VA to c9,t11-CLA. However, several additional
mechanisms for the anti-cancer effects of VA have
been proposed, including changes in phosphatidylinositol
hydrolysis, reduced proliferation, increased apoptosis, and inhibition
of fatty acid uptake. In conclusion,
although the epidemiological evidence of VA intake
and cancer risk suggests a positive relationship, this is not
supported by the few animal studies that have been performed. The majority of the studies suggest that any health benefit
of VA may be conferred by in vivo mammalian conversion
of VA to c9,t11-CLA. VA acts as a partial agonist to both peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ in vitro, with similar affinity compared to commonly known PPAR agonists. Hypolipidemic and
antihypertrophic bioactivity of VA is potentially mediated
via PPAR-/-dependent pathways.