U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 891 - 900 of 944 results

Status:
Investigational
Source:
INN:nicofibrate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Nicofibrate is an antilipidemic drug. Treatment of diabetics led to a significant reduction in plasma cholesterol and triglycerides and brought the lipoprotein picture back within the norm. Nicofibrate did not lead to significant increases in uricaemia nor to any worsening in carbohydrate tolerance. Nicofibrate may also lead to a significant drop in plasma prothrombinic activity.
Status:
Investigational
Source:
NCT00689221: Phase 3 Interventional Completed Glioblastoma
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Cilengitide is a cyclized Arg-Gly-Glu (RGD)-containing pentapeptide that selectively blocks activation of the αvβ3 and αvβ5 integrins. Its precursor was first synthesized in 1995 as c(RGDfV), and later modified by the incorporation of N-methyl Val c(RGDfMetV), generating the current form of the drug. Cilengitide displays subnanomolar antagonistic activity for αvβ3 and αvβ5, and is the first integrin antagonist evaluated in clinical phase I and II trials for treatment of glioblastoma and several other tumor types. Cilengitide-induced glioma cell death and inhibition of blood vessel formation may use different molecular mechanisms, including regulation of tumor hypoxia and activation of apoptotic pathways. Cilengitide inhibits cell signaling through FAK-Src-Akt and Erk mediated pathways in endothelial and tumor cells and attenuates the effect of VEGF stimulation on growth factor signaling. Cilengitide has shown encouraging activity in patients with glioblastoma as single agent, and in association with standard RT and temozolomide.
Status:
Investigational
Source:
INN:sunobinop [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ACHIRAL)

Showing 891 - 900 of 944 results