{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for m root_names_stdName in Standardized Name (approximate match)
Status:
US Approved Rx
(2022)
Source:
ANDA210701
(2022)
Source URL:
First approved in 2007
Source:
NDA022081
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Ambrisentan (alternative Names: BSF 208075; GSK 1325760; GSK1325760A; Letairis) is an endothelin receptor antagonist that is selective for the endothelin type-A (ETA) receptor. The chemical name of ambrisentan is (+)-(2S)-2-[(4,6-dimethylpyrimidin-2-yl)oxy]-3-methoxy-3,3-diphenylpropanoic acid. Ambrisentan is indicated for the treatment of pulmonary arterial hypertension. It is approved in Europe, Canada and the United States for use as a single agent to improve exercise ability and delay clinical worsening. In addition, it is approved in the United States for use in combination with tadalafil to reduce the risks of disease progression, hospitalization and to improve exercise ability. As an endothelin receptor antagonist, ambrisentan prevents endogenous endothelin peptide from constricting the muscles in blood vessels, allowing them to relax and permit a reduction in blood pressure. Endothelin-1 (ET-1) is a potent autocrine and paracrine peptide. Two receptor subtypes, ETA and ETB, mediate the effects of ET-1 in the vascular smooth muscle and endothelium. The primary actions of ETA are vasoconstriction and cell proliferation, while the predominant actions of ETB are vasodilation, antiproliferation, and ET-1 clearance. In patients with PAH, plasma ET-1 concentrations are increased as much as 10-fold and correlate with increased mean right atrial pressure and disease severity. ET-1 and ET-1 mRNA concentrations are increased as much as 9-fold in the lung tissue of patients with PAH, primarily in the endothelium of pulmonary arteries. These findings suggest that ET-1 may play a critical role in the pathogenesis and progression of PAH. Ambrisentan is a high-affinity (Ki=0.011 nM) ETA receptor antagonist with a high selectivity for the ETA versus ETB receptor (>4000-fold). The clinical impact of high selectivity for ETA is not known.
Status:
US Approved Rx
(2014)
Source:
NDA205625
(2014)
Source URL:
First approved in 2007
Source:
NDA022051
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fluticasone furoate is a synthetic trifluorinated corticosteroid with potent anti-inflammatory activity. Fluticasone furoate is a anti-allergic agents that is FDA approved for the treatment of symptoms of seasonal and perennial allergic rhinitis, asthma and for reducing exacerbations in patients with chronic obstructive pulmonary disease. Fluticasone furoate has been shown in vitro to exhibit a binding affinity for the human glucocorticoid receptor. The clinical relevance of these findings is unknown. The most common adverse reactions (>1% incidence) included headache, epistaxis, pharyngolaryngeal pain, nasal ulceration, back pain, pyrexia, and cough. Coadministration of ritonavir is not recommended. Use caution with coadministration of other potent CYP3A4 inhibitors, such as ketoconazole.
Status:
US Approved Rx
(2021)
Source:
ANDA209450
(2021)
Source URL:
First approved in 2006
Source:
NDA021908
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Lubiprostone is a medication used in the management of idiopathic chronic constipation. It is a bicyclic fatty acid (prostaglandin E1 derivative) which acts by specifically activating ClC-2 chloride channels on the apical aspect of gastrointestinal epithelial cells, producing a chloride-rich fluid secretion. These secretions soften the stool, increase motility, and promote spontaneous bowel movements (SBM). Lubiprostone acts by specifically activating ClC-2 chloride channels, which is a normal constituent of the apical membrane of the human intestine, in a protein kinase A action independent fashion. Activation of ClC-2 chloride channels causes an efflux of chloride ions into the lumen, which in turn leads to an efflux of sodium ions through a paracellular pathway to maintain isoelectric neutrality. As a result, water follows sodium into the lumen in order to maintain isotonic equilibrium, thereby increasing intestinal fluid secretion. By increasing intestinal fluid secretion, lubiprostone increases motility in the intestine, thereby increasing the passage of stool and alleviating symptoms associated with chronic idiopathic constipation. Activation of ClC-2 chloride channels may also stimulate the recovery of muscosal barrier function by restoring tight junction protein complexes in the intestine. Patch clamp cell studies in human cell lines have indicated that the majority of the beneficial biological activity of lubiprostone and its metabolites is observed only on the apical (luminal) portion of the gastrointestinal epithelium. Lubiprostone is marketed under the trade name Amitiza among others.
Status:
US Approved Rx
(2006)
Source:
NDA021991
(2006)
Source URL:
First approved in 2006
Source:
NDA021991
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Vorinostat (rINN) or suberoylanilide hydroxamic acid (SAHA), is a drug currently under investigation for the treatment of cutaneous T cell lymphoma (CTCL). Vorinostat inhibits the enzymatic activity of histone deacetylases HDAC1, HDAC2 and HDAC3 (Class I) and HDAC6 (Class II) at nanomolar concentrations (IC50< 86 nM). These enzymes catalyze the removal of acetyl groups from the lysine residues of histones proteins. In some cancer cells, there is an overexpression of HDACs, or an aberrant recruitment of HDACs to oncogenic transcription factors causing hypoacetylation of core nucleosomal histones. By inhibiting histone deacetylase, vorinostat causes the accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of some transformed cells. The mechanism of the antineoplastic effect of vorinostat has not been fully characterized. Vorinostat is used for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. Vorinostat is marketed under the name Zolinza by Merck for the treatment of cutaneous manifestations in patients with cutaneous T cell lymphoma (CTCL) when the disease persists, gets worse, or comes back during or after two systemic therapies.
Status:
US Approved Rx
(2025)
Source:
ANDA216168
(2025)
Source URL:
First approved in 2006
Source:
NDA021976
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Darunavir (trade name Prezista) is an orally active bis-furan-sulfonamide inhibitor of human immunodeficiency virus (HIV-1) protease. Darunavir was developed by Tibotec Pharmaceuticals (now Janssen R&D Ireland). Darunavir is indicated for the treatment of HIV-1 infection in adult and pediatric patients 3 years of age and older. The drug is co-administered with low-dose ritonavir and other anti-HIV agents. It is the only antiretroviral that has been registered at two different doses, 800/100 mg once-daily or 600/100 mg twice-daily, allowing its administration throughout the entire course of HIV disease, from naive subjects without any HIV-1 resistance to heavily treatment-experienced subjects with widespread triple-class family resistance.
Status:
US Approved Rx
(2006)
Source:
NDA021471
(2006)
Source URL:
First approved in 2006
Source:
NDA021471
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Also called Ecamsule (technical name terephthalylidine dicamphor sulfonic acid), Mexoryl SX is a synthetic sunscreen agent developed and patented by L’Oreal and used in the company’s sunscreen products sold outside the United States since 1993 (approved for use in Europe in 1991). Ecamsule affords broad spectrum protection against the sun’s UVB and UVA rays. Exposed to UV, ecamsule undergoes reversible photoisomerization, followed by photoexcitation. The absorbed UV is then released as thermal energy, without penetrating the skin. The UVB range is 280 to 320 nanometers, and the UVA range is 320 to 400. Ecamsule protects against UV wavelengths in the 290–400 nanometer range, with peak protection at 345 nm.[3][4] Since ecamsule doesn't cover the entire UV spectrum, it should be combined with other active sunscreen agents to ensure broad-spectrum UV protection. Ecamsule is a photostable organic UVA absorber, meaning it doesn't degrade significantly when exposed to light.
Status:
US Approved Rx
(2021)
Source:
ANDA214341
(2021)
Source URL:
First approved in 2005
Source:
NDA021882
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Deferasirox (marketed as Exjade, Desirox, Deferasirox) is an iron chelator. Its main use is to reduce chronic iron overload in patients who are receiving long term blood transfusions for conditions such as beta-thalassemia and other chronic anemias. It is the first oral medication approved for this purpose in the USA by FDA in November 2005. It is approved in the European Union by the European Medicines Agency (EMA) for children 6 years and older for chronic iron overload from repeated blood transfusions. Deferasirox is highly selective for iron as Fe3+. In approximately 1-year clinical trials of patients with transfusional chronic iron overload associated with beta-thalassaemia, sickle cell disease, myelodysplastic syndrome or other rare chronic anaemias, deferasiroxhad a beneficial effect on liver iron concentrations (LIC) and serum ferritin levels. Deferasirox can cause acute renal failure, fatal in some patients and requiring dialysis in others. It was showed that most fatalities occurred in patients with multiple comorbidities in advanced stages of their hematological disorders.
Status:
US Approved Rx
(2010)
Source:
NDA022532
(2010)
Source URL:
First approved in 2005
Source:
Select OB by Everett Laboratories, Inc.
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Status:
US Approved Rx
(2017)
Source:
NDA208587
(2017)
Source URL:
First approved in 2004
Source:
NUTRESTORE by EMMAUS MEDCL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Glutamine is a non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from glutamic acid and ammonia. It is the principal carrier of nitrogen in the body and is an important energy source for many cells. Supplemental L-glutamine's possible immunomodulatory role may be accounted for in a number of ways. L-glutamine appears to play a major role in protecting the integrity of the gastrointestinal tract and, in particular, the large intestine. During catabolic states, the integrity of the intestinal mucosa may be compromised with consequent increased intestinal permeability and translocation of Gram-negative bacteria from the large intestine into the body. The demand for L-glutamine by the intestine, as well as by cells such as lymphocytes, appears to be much greater than that supplied by skeletal muscle, the major storage tissue for L-glutamine. L-glutamine is the preferred respiratory fuel for enterocytes, colonocytes and lymphocytes. Therefore, supplying supplemental L-glutamine under these conditions may do a number of things. For one, it may reverse the catabolic state by sparing skeletal muscle L-glutamine. It also may inhibit translocation of Gram-negative bacteria from the large intestine. L-glutamine helps maintain secretory IgA, which functions primarily by preventing the attachment of bacteria to mucosal cells. L-glutamine appears to be required to support the proliferation of mitogen-stimulated lymphocytes, as well as the production of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). It is also required for the maintenance of lymphokine-activated killer cells (LAK). L-glutamine can enhance phagocytosis by neutrophils and monocytes. It can lead to an increased synthesis of glutathione in the intestine, which may also play a role in maintaining the integrity of the intestinal mucosa by ameliorating oxidative stress. The exact mechanism of the possible immunomodulatory action of supplemental L-glutamine, however, remains unclear. It is conceivable that the major effect of L-glutamine occurs at the level of the intestine. Perhaps enteral L-glutamine acts directly on intestine-associated lymphoid tissue and stimulates overall immune function by that mechanism, without passing beyond the splanchnic bed. Glutamine is used for nutritional supplementation, also for treating dietary shortage or imbalance.
Status:
US Approved Rx
(2017)
Source:
ANDA205995
(2017)
Source URL:
First approved in 2004
Source:
CAMPRAL by FOREST LABS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acamprosate was the third medication, after disulfiram and naltrexone, to receive U.S. Food and Drug Administration (FDA) approval for postwithdrawal maintenance of alcohol abstinence. The French pharmaceutical company Laboratoires Meram began clinical development and testing of acamprosate in 1982. From 1982 to 1988, acamprosate was tested for safety and for efficacy as a treatment for alcohol dependence. Based on these studies, in 1989 Laboratoires Meram was granted marketing authorization for acamprosate in France under the trade name Aotal®. Since then, acamprosate has been extensively used and studied throughout Europe and, subsequently, in the United States.
Although acamprosate has been used in Europe for more than 20 years, it was not approved by FDA until July 2004. Acamprosate became available for use in the United States in January 2005, under the trade name Campral® Delayed-Release Tablets (Merck Santé, a subsidiary of Merck KGaA, Darmstadt, Germany). Campral is currently marketed in the United States by Forest Pharmaceuticals. The mechanism of action of acamprosate in maintenance of alcohol abstinence is not completely understood. Chronic alcohol exposure is hypothesized to alter the normal balance between neuronal excitation and inhibition. in vitro and in vivo studies in animals have provided evidence to suggest acamprosate may interact with glutamate and GABA neurotransmitter systems centrally, and has led to the hypothesis that acamprosate restores this balance. It seems to inhibit NMDA receptors while activating GABA receptors.