U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 81 - 90 of 3025 results

Encorafenib, also known as BRAFTOVI or LGX818, is an orally available mutated BRaf V600E inhibitor with potential antineoplastic activity, which was developed by Novartis. LGX818 possesses selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. On June 27, 2018, the Food and Drug Administration approved encorafenib and Binimetinib (BRAFTOVI and MEKTOVI, Array BioPharma Inc.) in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test. Encorafenib and binimetinib target two different kinases in the RAS/RAF/MEK/ERK pathway. Compared with either drug alone, co-administration of encorafenib and binimetinib result in greater anti-proliferative activity in vitro in BRAF mutation-positive cell lines and greater anti-tumor activity with respect to tumor growth inhibition in BRAF V600E mutant human melanoma xenograft studies in mice. In addition to the above, the combination of encorafenib and binimetinib acted to delay the emergence of resistance in BRAF V600E mutant human melanoma xenografts in mice compared with the administration of either drug alone. Encorafenib is in phase III for Metastatic Colorectal Cancer and in phase II for Relapsed or Refractory Multiple Myeloma.
Lutetium Lu 177 dotatate binds to somatostatin receptors with highest affinity for subtype 2 receptors (SSRT2). Upon binding to somatostatin receptor expressing cells, including malignant somatostatin receptor-positive tumors, the compound is internalized. The beta emission from Lu 177 induces cellular damage by formation of free radicals in somatostatin receptor-positive cells and in neighboring cells. LUTATHERA® (lutetium Lu 177 dotatate) is indicated for the treatment of somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors (GEP-NETs), including foregut, midgut, and hindgut neuroendocrine tumors in adults.
Gilteritinib, also known as ASP2215, is a potent FLT3/AXL inhibitor, which showed potent antileukemic activity against AML with either or both FLT3-ITD and FLT3-D835 mutations. In in vitro, among the 78 tyrosine kinases tested, Gilteritinib inhibited FLT3, LTK, ALK, and AXL kinases by over 50% at 1 nM with an IC50 value of 0.29 nM for FLT3, approximately 800-fold more potent than for c-KIT, the inhibition of which is linked to a potential risk of myelosuppression. Gilteritinib inhibited the growth of MV4-11 cells, which harbor FLT3-ITD, with an IC50 value of 0.92 nM, accompanied with inhibition of pFLT3, pAKT, pSTAT5, pERK, and pS6. Gilteritinib decreased tumor burden in bone marrow and prolonged the survival of mice intravenously transplanted with MV4-11 cells. In previous preclinical studies, gilteritinib has demonstrated superior antitumor effects when given in combination with AraC and either DNR or IDR compared with combination chemotherapy. In November 2018, the FDA approved gilteritinib for treatment of adult patients with relapsed or refractory acute myeloid leukemia (AML) with a FLT3 mutation as detected by an FDA-approved test.
Lorlatinib is an investigational medicine that inhibits the anaplastic lymphoma kinase (ALK) and ROS1 proto-oncogene. Lorlatinib was specifically designed to inhibit tumor mutations that drive resistance to other ALK inhibitors. Lorlatinib has in vitro activity against ALK and number of other tyrosine kinase receptor related targets including ROS1, TYK1, FER, FPS, TRKA, TRKB, TRKC, FAK, FAK2, and ACK. Lorlatinib demonstrated in vitro activity against multiple mutant forms of the ALK enzyme, including some mutations detected in tumors at the time of disease progression on crizotinib and other ALK inhibitors. Moreover, lorlatinib possesses the capability to cross the blood-brain barrier, allowing it to reach and treat progressive or worsening brain metastases as well. Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) indicated for the treatment of patients with ALK-positive metastatic non-small cell lung cancer (NSCLC) whose disease has progressed on a) the prior use of crizotinib and at least one other ALK inhibitor for metastatic disease, or b) the prior use of alectinib as the first ALK inhibitor therapy for metastatic disease, or c) the prior use of certinib as the first ALK inhibitor therapy for metastatic disease.
Duvelisib (IPI-145), is an orally available, small-molecule, selective dual inhibitor of phosphatidylinositol 3 kinase (PI3K) δ and γ isoforms originated by Intellikine (owned by Takeda) and developed by Infinity Pharmaceuticals. Orally administered duvelisib was rapidly absorbed, with a dose-proportional increase in exposure. The compound produced a half-life of approximately 7-12 hours, following 14 days of dosing. Duvelisib exerts profound effects on adaptive and innate immunity by inhibiting B and T cell proliferation, blocking neutrophil migration, and inhibiting basophil activation. Duvelisib blockade of PI3K-δ and PI3K-γ potentially lead to significant therapeutic effects in multiple inflammatory, autoimmune, and hematologic diseases. The molecule is in phase III development as a combination therapy for patients with haematological malignancies such as chronic lymphocytic leukemia and follicular lymphoma.
PF-04449913 is a potent and selective inhibitor of the Hh signaling pathway through binding to the target, smoothened. PF-04449913 inhibits Hh signaling in vitro and has demonstrated significant antitumor activity in vivo. In the clinic, PF-04449913 is being evaluated both in hematological and solid malignancies, with a phase II trial currently underway in both fit and unfit patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). Treatment-related adverse-events were nausea, dizziness, somnolence, QT prolongation and pruritus. Based on pre-clinical assessments, CYP3A4 is believed to be primarily involved in the metabolism of PF-04449913 that is why PF-04449913 plasma exposures and peak concentrations were increased following concurrent administration of ketoconazole (CYP3A4 inhibitor).
Baricitinib (trade name Olumiant) is an investigational drug for rheumatoid arthritis (RA), being developed by Incyte and Eli Lilly. Baricitinib is a selective JAK1 and JAK2 inhibitor with IC50 of 5.9 nM and 5.7 nM in cell-free assays. In February 2017 Baricitinib was approved for use in the European Union as a second-line therapy for moderate to severe active rheumatoid arthritis in adults, either alone or in combination with methotrexate. On 31 May 2018 FDA approved Barictinib for the treatment of adult patients with moderately to severely active rheumatoid arthritis who have had an inadequate response to one or more TNF antagonist therapies.
Stiripentol is an anticonvulsant drug used in the treatment of epilepsy. It recently proved to increase the GABAergic transmission in vitro in an experimental model of immature rat. Clinical studies were based on the fact that STP also acts as an inhibitor of CYP3A4, CYP1A2, and CYP2C19 in vivo in epileptic patients. Side effects are largely due to the increase in plasma concentrations of other anticonvulsants and can be reduced by lowering the dose of those drugs. Nausea and vomiting are particularly noted when used in combination with sodium valproate. It appears to increase the potency of phenobarbital, primidone, phenytoin, carbamazepine, clobazam and diazepam.
Brilliant Blue G is triphenylmethane dye that was developed for use in the textile industry but is now commonly used for staining proteins in analytical biochemistry. The Bradford assay is a standard, rapid dye-binding assay that uses Brilliant Blue G to quantify the amount of protein in a solution. Brilliant Blue G also acts as a selective inhibitor of the P2X purinoceptor channel P2X7 (IC50s = 10.1 and 265 nM for rat and human P2X7, respectively). In mice, it inhibits interleukin-1β expression and reduces neurological injury secondary to traumatic brain injury. Brilliant Blue G was used to prepare the protein reagent for the determination of protein content of the collagenase enzyme isolated from fish waste. It may be employed as a stain for the internal limiting membrane (ILM) for the macular hole (MH) and epiretinal membrane (ERM) surgery.
Omadacycline is a tetracyclin-derivative antibiotic, originated in Tufts University, and later co-developed by Merck and Paratek Pharmaceuticals. The drug was approved for treatment of community-acquired pneumonia, and for treatment of acute bacterial skin and skin structure infections. Omadacycline tosylate is available as tablets and in injectable form.