{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for ascorbic root_codes_comments in Code Comments (approximate match)
Status:
US Approved Rx
(2019)
Source:
ANDA207271
(2019)
Source URL:
First approved in 1987
Source:
NDA019618
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mesalamine, also known as Mesalazine or 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug used to treat inflammation of the digestive tract (Crohn's disease) and mild to moderate ulcerative colitis. Mesalazine is a bowel-specific aminosalicylate drug that is metabolized in the gut and has its predominant actions there, thereby having fewer systemic side effects. As a derivative of salicylic acid, 5-ASA is also an antioxidant that traps free radicals, which are potentially damaging by-products of metabolism. Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. Mesalazine is used for the treatment of active ulcerative proctitis.
Status:
US Approved Rx
(2008)
Source:
ANDA077981
(2008)
Source URL:
First approved in 1987
Source:
NDA019655
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1). Zidovudine is phosphorylated to active metabolites that compete for incorporation into viral DNA. They inhibit the HIV reverse transcriptase enzyme competitively and act as a chain terminator of DNA synthesis. The lack of a 3'-OH group in the incorporated nucleoside analogue prevents the formation of the 5' to 3' phosphodiester linkage essential for DNA chain elongation, and therefore, the viral DNA growth is terminated. Zidovudine, a structural analog of thymidine, is a prodrug that must be phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). It inhibits the activity of HIV-1 reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. It competes with the natural substrate dGTP and incorporates itself into viral DNA. It is also a weak inhibitor of cellular DNA polymerase α and γ. Zidovudine is used in combination with other antiretroviral agents for the treatment of human immunovirus (HIV) infections. Zidovudine is marketed as Retrovir.
Status:
US Approved Rx
(2006)
Source:
ANDA077356
(2006)
Source URL:
First approved in 1987
Source:
NOVANTRONE by EMD SERONO
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Mitoxantrone (NOVANTRONE) is a synthetic antineoplastic
anthracenedione. Mitoxantrone, a DNA-reactive agent that intercalates into deoxyribonucleic acid (DNA)
through hydrogen bonding, causes crosslinks and strand breaks. Mitoxantrone also interferes with ribonucleic acid (RNA) and is a potent inhibitor of topoisomerase II, an
enzyme responsible for uncoiling and repairing damaged DNA. It has a cytocidal effect
on both proliferating and nonproliferating cultured human cells, suggesting lack of cell
cycle phase specificity.
Mitoxantrone has been shown in vitro to inhibit B cell, T cell, and macrophage
proliferation and impair antigen pre sentation, as well as the secretion of interferon
gamma, TNFα, and IL-2. NOVANTRONE is indicated for reducing neurologic disability and/or the frequency of
clinical relapses in patients with secondary (chronic) progressive, progressive relapsing,
or worsening relapsing-remitting multiple sclerosis (i.e., patients whose neurologic status
is significantly abnormal between relapses). NOVANTRONE in combination with corticosteroids is indicated as initial chemotherapy
for the treatment of patients with pain related to advanced hormone-refractory prostate
cancer.
NOVANTRONE in combination with other approved drug(s) is indicated in the initial
therapy of acute nonlymphocytic leukemia (ANLL) in adults. This category includes
myelogenous, promyelocytic, monocytic, and erythroid acute leukemias.
Status:
US Approved Rx
(2019)
Source:
ANDA212452
(2019)
Source URL:
First approved in 1987
Source:
NDA019594
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Status:
US Approved Rx
(2017)
Source:
ANDA206713
(2017)
Source URL:
First approved in 1986
Source:
CYKLOKAPRON by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tranexamic acid is an antifibrinolytic that competitively inhibits the activation of plasminogen to plasmin. Tranexamic acid is a competitive inhibitor of plasminogen activation, and at much higher concentrations, a noncompetitive inhibitor of plasmin, i.e., actions similar to aminocaproic acid. Tranexamic acid is about 10 times more potent in vitro than aminocaproic acid. Tranexamic acid binds more strongly than aminocaproic acid to both the strong and weak receptor sites of the plasminogen molecule in a ratio corresponding to the difference in potency between the compounds. Tranexamic acid in a concentration of 1 mg per mL does not aggregate platelets in vitro. In patients with hereditary angioedema, inhibition of the formation and activity of plasmin by tranexamic acid may prevent attacks of angioedema by decreasing plasmin-induced activation of the first complement protein (C1). Tranexamic acid is used for use in patients with hemophilia for short term use (two to eight days) to reduce or prevent hemorrhage and reduce the need for replacement therapy during and following tooth extraction. It can also be used for excessive bleeding in menstruation, surgery, or trauma cases.
Status:
US Approved Rx
(1993)
Source:
ANDA074014
(1993)
Source URL:
First approved in 1986
Source:
ORUDIS by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Dexketoprofen is a nonsteroidal anti-inflammatory drug (NSAID), manufactured by Menarini under the tradename Keral. Dexketoprofen is indicated for short-term treatment of mild to moderate pain, including dysmenorrhoea. Dexketoprofen works by blocking the action of a substance in the body called cyclo-oxygenase, which is involved in the production of chemicals in the body called prostaglandins. Prostaglandins are produced in response to injury or certain diseases and would otherwise go on to cause swelling, inflammation, and pain. By blocking cyclo-oxygenase, dexketoprofen prevents the production of prostaglandins and therefore reduces inflammation and pain. Along with peripheral analgesic action, it possesses central analgesic action. Dexketoprofen may cause dizziness, and patients should not, therefore, drive or operate heavy machinery or vehicles until they are familiar with how dexketoprofen affects them. Concomitant use of alcohol and other sedatives may potentiate this effect. In a small subset of individuals, the dizziness may be intolerable and require the transition to an alternative treatment.
Status:
US Approved Rx
(2023)
Source:
ANDA218181
(2023)
Source URL:
First approved in 1986
Source:
PEPCID by BAUSCH
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Famotidine, a competitive histamine H2-receptor antagonist, is used to treat gastrointestinal disorders such as gastric or duodenal ulcer, gastroesophageal reflux disease, and pathological hypersecretory conditions. Famotidine inhibits many of the isoenzymes of the hepatic CYP450 enzyme system. Other actions of Famotidine include an increase in gastric bacterial flora such as nitrate-reducing organisms. Famotidine binds competitively to H2-receptors located on the basolateral membrane of the parietal cell, blocking histamine affects. This competitive inhibition results in reduced basal and nocturnal gastric acid secretion and a reduction in gastric volume, acidity, and amount of gastric acid released in response to stimuli including food, caffeine, insulin, betazole, or pentagastrin.
Status:
US Approved Rx
(2012)
Source:
ANDA201089
(2012)
Source URL:
First approved in 1986
Source:
NDA019268
Source URL:
Class (Stereo):
CHEMICAL (MIXED)
Conditions:
Misoprostol is a prostaglandin E1 (PGE1) analogue used for the treatment and prevention of stomach ulcers. When administered, misoprostol stimulates increased secretion of the protective mucus that lines the gastrointestinal tract and increases mucosal blood flow, thereby increasing mucosal integrity. It is sometimes co-prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) to prevent the occurrence of gastric ulceration, a common adverse effect of the NSAIDs. Misoprostol seems to inhibit gastric acid secretion by a direct action on the parietal cells through binding to the prostaglandin receptor. The activity of this receptor is mediated by G proteins which normally activate adenylate cyclase. The indirect inhibition of adenylate cyclase by Misoprostol may be dependent on guanosine-5’-triphosphate (GTP). The significant cytoprotective actions of misoprostol are related to several mechanisms. These include: 1. Increased secretion of bicarbonate, 2. Considerable decrease in the volume and pepsin content of the gastric secretions, 3. It prevents harmful agents from disrupting the tight junctions between the epithelial cells which stops the subsequent back diffusion of H+ ions into the gastric mucosa, 4. Increased thickness of mucus layer, 5. Enhanced mucosal blood flow as a result of direct vasodilatation, 6. Stabilization of tissue lysozymes/vascular endothelium, 7. Improvement of mucosal regeneration capacity, and 8. Replacement of prostaglandins that have been depleted as a result of various insults to the area. Misoprostol has also been shown to increase the amplitude and frequency of uterine contractions during pregnancy via selective binding to the EP-2/EP-3 prostanoid receptors. Misoprostol is indicated for the treatment of ulceration (duodenal, gastric and NSAID induced) and prophylaxis for NSAID induced ulceration. Misoprostol is also indicated for other uses that are not approved in Canada, including the medical termination of an intrauterine pregnancy used alone or in combination with methotrexate, as well as the induction of labour in a selected population of pregnant women with unfavourable cervices. This indication is avoided in women with prior uterine surgery or cesarean surgery due to an increased risk of possible uterine rupture. Misoprostol is also used for the prevention or treatment of serious postpartum hemorrhage. Misoprostol is sold under the brandname Cytotec among others.
Status:
US Approved Rx
(1995)
Source:
ANDA074447
(1995)
Source URL:
First approved in 1986
Source:
OCUFEN by ALLERGAN
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Flurbiprofen, a propionic acid derivative, is a nonsteroidal anti-inflammatory drug that exhibits antiinflammatory, analgesic, and antipyretic activities in animal models. Flurbiprofen Tablets are indicated for relief of the signs and symptoms of rheumatoid arthritis and for relief of the signs and symptoms of osteoarthritis. It may also be used to treat pain associated with dysmenorrhea and mild to moderate pain accompanied by inflammation (e.g. bursitis, tendonitis, soft tissue trauma). Flurbiprofen may also be used topically prior to ocular surgery to prevent or reduce intraoperative miosis. Similar to other NSAIAs, the anti-inflammatory effect of flurbiprofen occurs via reversible inhibition of cyclooxygenase (COX), the enzyme responsible for the conversion of arachidonic acid to prostaglandin G2 (PGG2) and PGG2 to prostaglandin H2 (PGH2) in the prostaglandin synthesis pathway. This effectively decreases the concentration of prostaglandins involved in inflammation, pain, swelling and fever. Flurbiprofen is a non-selective COX inhibitor and inhibits the activity of both COX-1 and -2. It is also one of the most potent NSAIAs in terms of prostaglandin inhibitory activity.
Status:
US Approved Rx
(1985)
Source:
NDA018948
(1985)
Source URL:
First approved in 1985
Source:
NDA018948
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Levocarnitine propionate or Propionyl L-carnitine (PLC) is the propionyl ester of L-carnitine. Propionyl-L-carnitine stimulates energy production in ischaemic muscles by increasing citric acid cycle flux and stimulating pyruvate dehydrogenase activity. The free radical scavenging activity of the drug may also be beneficial. Propionyl-L-carnitine improves coagulative fibrinolytic homeostasis in vasal endothelium and positively affects blood viscosity. It exhibits a high affinity for the muscle enzyme, carnitine acyl transferase, and as such readily converts into propionyl-CoA and free carnitine. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. PLC is marketed under the trade name Dromos®. It is indicated for patients with peripheral arterial occlusive disorders and for exercise intolerance enhancement in patients with chronic congestive heart failure. Dromos is marketed in Italy.