U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 51 - 60 of 39119 results

Tezacaftor (VX-661) is an investigational compound developed by Vertex Pharmaceuticals to treat cystic fibrosis (CF). It is an oral corrector of the CF transmembrane regulator (CFTR) and is similar to lumacaftor, another N-aryl-1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropanecarboxamide derivative developed by Vertex. Cystic fibrosis is caused by defects in CFTR gene, which encodes an epithelial chloride channel. The most common mutant Δ508CFTR is a misfolded protein that does not reach the cell membrane. VX-661 corrects trafficking of Δ508CFTR and partially restores chloride channel activity. In vitro, a combination of VX-661 and ivacaftor, an FDA approved in 2012 CFTR potentiator which increases the time the CFTR channel is open, allowing chloride ions to flow through the CFTR proteins on the surface of epithelial cells, resulted in greater CFTR activity compared with VX-661 alone. In February 2012, a phase 2, double-blind, placebo-controlled study of VX-661 was initiated in CF patients who were homozygous or heterozygous for the F508del mutation. There is an ongoing Vertex Phase 3 development program of VX-661 in combination with ivacaftor which includes four studies on CF patients 1) with two copies of the F508del mutation, 2) one copy of the F508del mutation and a second mutation that results in residual CFTR function, 3) one copy of the F508del mutation and a second mutation that results in residual CFTR function gating defect in the CFTR protein and 4) one copy of the F508del mutation and a second mutation that results in minimal CFTR function.
Bictegravir is a component of the fixed-dose combination product bictegravir/emtricitabine/tenofovir alafenamide (BIKTARVY®), which received marketing approval for the treatment of human immunodeficiency virus (HIV) infection by the U.S. Food and Drug Administration in February 2018. Bictegravir inhibits the strand transfer activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required for viral replication. Inhibition of integrase prevents the integration of linear HIV-1 DNA into host genomic DNA, blocking the formation of the HIV-1 provirus and propagation of the virus.
Encorafenib, also known as BRAFTOVI or LGX818, is an orally available mutated BRaf V600E inhibitor with potential antineoplastic activity, which was developed by Novartis. LGX818 possesses selective anti-proliferative and apoptotic activity in cells expressing BRAFV600E. In the A375 (BRAFV600E) human melanoma cell line LGX818 suppresses phospho-ERK (EC50 = 3 nM) leading to potent inhibition of proliferation (EC50 = 4 nM). No significant activity was observed against a panel of 100 kinases (IC50 > 900 nM) and LGX818 did not inhibit proliferation of > 400 cell lines expressing wild-type BRAF. On June 27, 2018, the Food and Drug Administration approved encorafenib and Binimetinib (BRAFTOVI and MEKTOVI, Array BioPharma Inc.) in combination for patients with unresectable or metastatic melanoma with a BRAF V600E or V600K mutation, as detected by an FDA-approved test. Encorafenib and binimetinib target two different kinases in the RAS/RAF/MEK/ERK pathway. Compared with either drug alone, co-administration of encorafenib and binimetinib result in greater anti-proliferative activity in vitro in BRAF mutation-positive cell lines and greater anti-tumor activity with respect to tumor growth inhibition in BRAF V600E mutant human melanoma xenograft studies in mice. In addition to the above, the combination of encorafenib and binimetinib acted to delay the emergence of resistance in BRAF V600E mutant human melanoma xenografts in mice compared with the administration of either drug alone. Encorafenib is in phase III for Metastatic Colorectal Cancer and in phase II for Relapsed or Refractory Multiple Myeloma.

Class (Stereo):
CHEMICAL (ACHIRAL)



Apalutamide (developmental code name ARN-509) is a selective and competitive androgen receptor inhibitor with IC50 of 16 nM, useful for prostate cancer treatment. Apalutamide binds to AR in target tissues thereby preventing androgen-induced receptor activation and facilitating the formation of inactive complexes that cannot be translocated to the nucleus. This prevents binding to and transcription of AR-responsive genes. This ultimately inhibits the expression of genes that regulate prostate cancer cell proliferation and may lead to an inhibition of cell growth in AR-expressing tumor cells. Apalutamide is currently in phase III clinical trials for castration-resistant prostate cancer.
Lorlatinib is an investigational medicine that inhibits the anaplastic lymphoma kinase (ALK) and ROS1 proto-oncogene. Lorlatinib was specifically designed to inhibit tumor mutations that drive resistance to other ALK inhibitors. Lorlatinib has in vitro activity against ALK and number of other tyrosine kinase receptor related targets including ROS1, TYK1, FER, FPS, TRKA, TRKB, TRKC, FAK, FAK2, and ACK. Lorlatinib demonstrated in vitro activity against multiple mutant forms of the ALK enzyme, including some mutations detected in tumors at the time of disease progression on crizotinib and other ALK inhibitors. Moreover, lorlatinib possesses the capability to cross the blood-brain barrier, allowing it to reach and treat progressive or worsening brain metastases as well. Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) indicated for the treatment of patients with ALK-positive metastatic non-small cell lung cancer (NSCLC) whose disease has progressed on a) the prior use of crizotinib and at least one other ALK inhibitor for metastatic disease, or b) the prior use of alectinib as the first ALK inhibitor therapy for metastatic disease, or c) the prior use of certinib as the first ALK inhibitor therapy for metastatic disease.
Baricitinib (trade name Olumiant) is an investigational drug for rheumatoid arthritis (RA), being developed by Incyte and Eli Lilly. Baricitinib is a selective JAK1 and JAK2 inhibitor with IC50 of 5.9 nM and 5.7 nM in cell-free assays. In February 2017 Baricitinib was approved for use in the European Union as a second-line therapy for moderate to severe active rheumatoid arthritis in adults, either alone or in combination with methotrexate. On 31 May 2018 FDA approved Barictinib for the treatment of adult patients with moderately to severely active rheumatoid arthritis who have had an inadequate response to one or more TNF antagonist therapies.
Brilliant Blue G is triphenylmethane dye that was developed for use in the textile industry but is now commonly used for staining proteins in analytical biochemistry. The Bradford assay is a standard, rapid dye-binding assay that uses Brilliant Blue G to quantify the amount of protein in a solution. Brilliant Blue G also acts as a selective inhibitor of the P2X purinoceptor channel P2X7 (IC50s = 10.1 and 265 nM for rat and human P2X7, respectively). In mice, it inhibits interleukin-1β expression and reduces neurological injury secondary to traumatic brain injury. Brilliant Blue G was used to prepare the protein reagent for the determination of protein content of the collagenase enzyme isolated from fish waste. It may be employed as a stain for the internal limiting membrane (ILM) for the macular hole (MH) and epiretinal membrane (ERM) surgery.

Class (Stereo):
CHEMICAL (ACHIRAL)



Prucalopride is a novel enterokinetic compound and is the first representative of the benzofuran class. Prucalopride is a potent, selective and specific serotonin 5-HT4 receptor (5-HT4-R) agonist. Prucalopride (Resolor®), a highly selective serotonin 5-HT4 receptor agonist, is indicated in the European Economic Area for the treatment of adults with chronic idiopathic constipation (CIC) in whom laxatives have failed to provide adequate relief.
Fostamatinib is a pro-drug of a Syk inhibitor R406 initially developed by Rigel Pharmaceuticals, but then in-licensed by AstraZeneca. It reached phase III of clinical trials for such diseases as Rheumatoid Arthritis and Immune Thrombocytopenic Purpura, however, AstraZeneca decided not to proceed with regulatory filings and return the rights to the compound to Rigel Pharmaceuticals. In 2018 the drug was approved by the FDA for treatment of chronic immune thrombocytopenia. Fostamatinib is being developed for Autoimmune Hemolytic Anemia (phase II), graft versus host disease (phase I) and ovarian cancer (phase I).