U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 531 - 540 of 4933 results

Status:
Investigational
Source:
INN:edasalonexent [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

CAT-1004 (Edasalonexent)is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Structurally CAT-1004 represents covalently links salicylic acid and docosahexaenoic acid -- two compounds known to inhibit NF-κB. . In a Phase 1 study in adults, NF-κB activity in peripheral mononuclear cells was inhibited following a single dose of edasalonexent but not by equimolar doses of salicylic acid and docosahexaenoic acid. Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy, which occurs early in the disease process and precedes loss of muscle function. Salicylic acid prevents NF-κB mediated muscle atrophy and decreases protein catabolism in muscle. Docosahexaenoic acid has been shown to upregulate anti-inflammatory pathways and suppress pro-inflammatory pathways via modulation of NF-κB activity. Edasalonexent is endocytosed and hydrolyzed by intracellular fatty acid amide hydrolase (FAAH) to release salicylic acid and DHA in the intracellular compartment, thus having a potential advantage of selectively delivering higher doses in target muscle cells where FAAH is abundant.
Status:
Investigational
Source:
NCT01540071: Phase 2 Interventional Completed Castration Resistant Prostate Cancer
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



VTP-194204 (NRX 194204, IRX4204) is a second-generation retinoid X receptor (RXR) agonist that has no cross-reactivity with retinoic acid receptors, farnesoid X receptor, liver X receptors or peroxisome proliferator-activated receptor PPARγ. Rexinoid NRX 194204 selectively binds to and activates RXRs. Because RXRs can form heterodimers with several nuclear receptors (NRs), RXR activation by this agent may result in a broad range of gene expression depending on the effector DNA response elements activated. Rexinoid NRX 194204 may inhibit the tumour-necrosis factor (TNF)-mediated release of nitric oxide (NO) and interleukin 6 (IL6) and may inhibit tumour cell proliferation. This agent appears to be less toxic than RAR-selective ligands. VTP-194204 (IRX-4204) is in phase II clinical trials by Io Therapeutics for the treatment of prostate cancer. It is also in preclinical trials for the treatment of Alzheimer's disease, autoimmune diseases and multiple sclerosis.
Status:
Investigational
Source:
NCT01034631: Phase 1/Phase 2 Interventional Completed Renal Cell Carcinoma
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

BNC105P, a vascular disrupting agent, is a disodium phosphate ester prodrug of BNC105. BNC105P is a tubulin polymerization inhibitor that suppresses cancer cell proliferation. BNC105P participated in phase I/II trial for patients with metastatic renal cell carcinoma. Although the primary endpoint was not met in an unselected population, correlative studies suggested several biomarkers that warrant further prospective evaluation. Besides, BNC105P was involved in phase II clinical trial as second-line chemotherapy for advanced malignant pleural mesothelioma. The drug was safe and tolerable, but the sole response was insufficient to warrant further research as a single agent. In addition, BNC105P in combination with Ibrutinib was studied in phase I trials for patients with chronic lymphocytic leukemia to determine the preliminary assessment of the efficacy.
Status:
Investigational
Source:
NCT01898884: Phase 1 Interventional Completed Friedreich's Ataxia
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



3-Indolepropionic acid (IN-OX1; Indole-3-propionic acid; OX-1; Oxigon; SHP 22; SHP-622; VP-20629), an endogenous substance produced by bacteria in the intestine, is a deamination product of Tryptophan (T947200) that protects the hippocampus (studied in gerbils) from ischemic damage and oxidative stress. It’s ability to protect the neurons in this way is attributed to its potent antioxidative effects. 3-Indolepropionic acid is also hypothesized to have protective effects on the thyroid gland. 3-Indolepropionic acid is being studied for therapeutic use in Alzheimer's disease. 3-Indolepropionic acid (IPA) completely protected primary neurons and neuroblastoma cells against oxidative damage and death caused by exposure to Abeta, by inhibition of superoxide dismutase, or by treatment with hydrogen peroxide. In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity. In 2011, Intellect redirected the focus of the OX1 program from Alzheimer's disease to FA (Friedreich's Ataxia). Research suggests that the symptoms associated with FA are the result of oxidative stress caused by the abnormal accumulation of iron. OX1's ability to neutralize ROS could be an effective agent to reduce oxidative stress in FA, thereby eliminating the symptoms of FA and increasing both quality of life and longevity in affected individuals.
Mavoglurant (AFQ056) was developed as a new metabotropic glutamate receptor 5 (mGluR5) antagonist. The efficacy of mavoglurant in humans has been assessed in L-dopa induced dyskinesia in Parkinson's disease and Fragile X syndrome in proof of principle clinical studies. However, Novartis had announced that the company would be discontinuing its development program in Fragile X following negative results in a large international clinical trial in adults, and more recently in a trial in adolescents. In both placebo-controlled trials, patients taking mavoglurant did not show improvement over placebo in any outcome measures. In patients with L-Dopa-induced dyskinesias studies failed to meet the primary objective of demonstrating improvement of dyskinesia. Mavoglurant was also investigated in phase II clinical trials to reduce chorea in Huntington's disease, but the target result was not achieved. Currently Novartis is conducting a phase II clinical trial to demonstrate whether or not this drug can benificially reduce cocaine use in Cocaine Use Disorder.
Status:
Investigational
Source:
INN:ezlopitant
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Ezlopitant (CJ-11974) is a non-peptide neurokinin-1 receptor antagonist. Pfizer was developing ezlopitant for the potential treatment of irritable bowel syndrome and chemotherapy-induced emesis. Development of ezlopitant has been discontinued.
Dequalinium salicylate is a bisquanternary quinolinium antiseptic which kills many gram-positive and gram-negative bacteria. Dequalinium Salicylate have antibacterial (mediated by Dequalinium action) and anti-inflammatory activities (mediated by Salicylic acid action). Dequalinium has an antiseptic effect against a wide range of bacteria, yeasts, and some fungi and viruses. It kills the micro-organisms associated with various mild infections of the mouth and throat. Salicylic acid have direct anti-inflammatory activity mediated by inhibition of both types of cyclo-oxygenases (COX-1 and COX-2) to decrease the formation of precursors of prostaglandins and thromboxanes from arachidonic acid.
Triptolide, the active component of Tripterygium wilfordii Hook F has been used to treat autoimmune and inflammatory conditions for over two hundred years in traditional Chinese medicine. Triptolide possesses immunosuppressive, anti-inflammatory, and anti-cancer effects. Triptolide is a woody vine which is widely distributed in Eastern and Southern China. In China, triptolide is frequently used to treat autoimmune and/or inflammatory diseases due to its favorable cost–benefit ratio. Commercial preparations of triptolide have been commonly used for the treatment of inflammatory and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, nephritis and psoriasis.Triptolide has been demonstrated to exert novel chondroprotective and anti-inflammatory effects on rheumatoid arthritis. Triptolide has been used to treat ADPKD patients in clinical trials in China. Triptolide significantly protected glomerular filtration rate (eGFR) of ADPKD patients compared with placebo. Two recent small clinical studies have demonstrated tiptolide’s effectiveness against rheumatoid arthritis. A larger study confirmed the therapeutic effects of triptolide in the aforementioned studies. Triptolide is among the most powerful and broadly active antiinflammatory/immunomodulating natural products ever discovered. Triptolide acts at nanomolar concentrations and inhibits the production of various cellular targets including inflammatory cytokines, cyclooxygenase, inducible nitric oxide synthase and metalloproteinases and transcription factors. The anti-tumor activity of Triptolide in vitro and in various tumor-bearing animal models has been investigated for years, and many findings showed that Triptolide is a promising agent in anti-tumor therapy. Triptolide has been approved for Phase I clinical trials for the treatment of prostate cancer, but the anti-tumor effect and mechanism of TPL need to be further elucidated.
Status:
Investigational
Source:
NCT01870115: Phase 1 Interventional Completed Osteoporosis
(2013)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
NCT04566679: Not Applicable Interventional Unknown status Irritable Bowel Syndrome (IBS)
(2021)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)