{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
tyrosine
to a specific field?
Status:
US Approved Rx
(2022)
Source:
NDA216387
(2022)
Source URL:
First approved in 2017
Source:
NDA210259
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acalabrutinib, also known as ACP-196, is a novel irreversible second-generation Bruton’s tyrosine kinase (BTK) inhibitor, which prevents the activation of the B-cell antigen receptor (BCR) signaling pathway and that, was rationally designed to be more potent and selective than ibrutinib. This drug in clinical trials phase III for treatment the treatment of relapsed chronic lymphocytic leukemia. Also in combination with others drugs, Acalabrutinib in phase II of clinical trials for the treatment Glioblastoma Multiforme, Mantle Cell Lymphoma, Squamous Cell Carcinoma of the Head and Neck, Rheumatoid Arthritis and some others.
Status:
US Approved Rx
(2017)
Source:
NDA208772
(2017)
Source URL:
First approved in 2017
Source:
NDA208772
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Brigatinib (AP26113) is an investigational, targeted cancer medicine discovered internally at ARIAD Pharmaceuticals, Inc. Brigatinib has exhibited activity as a potent dual inhibitor of anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR). It is in development for the treatment of patients with anaplastic lymphoma kinase positive (ALK ) non-small cell cancer (NSCLC) whose disease is resistant to crizotinib. Brigatinib is currently being evaluated in the global Phase 2 ALTA (ALK in Lung Cancer Trial of AP26113) trial that is anticipated to form the basis for its initial regulatory review. ARIAD has also initiated the Phase 3 ALTA 1L trial to assess the efficacy of brigatinib in comparison to crizotinib. Brigatinib was granted orphan drug designation by the U.S. Food and Drug Administration (FDA) in May 2016 for the treatment of certain subtypes of non-small cell lung cancer (NSCLC). The designation is for anaplastic lymphoma kinase-positive (ALK ), c-ros 1 oncogene positive (ROS1 ), or epidermal growth factor receptor positive (EGFR ) non-small cell lung cancer (NSCLC). Brigatinib received breakthrough therapy designation from the FDA in October 2014 for the treatment of patients with ALK NSCLC whose disease is resistant to crizotinib. Both designations were based on results from an ongoing Phase 1/2 trial that showed anti-tumor activity of brigatinib in patients with ALK NSCLC, including patients with active brain metastases.
Status:
US Approved Rx
(2015)
Source:
NDA208434
(2015)
Source URL:
First approved in 2015
Source:
NDA208434
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Alectinib is a second generation oral drug that selectively inhibits the activity of anaplastic lymphoma kinase (ALK) tyrosine kinase. It was developed by Chugai Pharmaceutical Co. Japan, which is part of the Hoffmann-La Roche group. Alectinib is specifically used in the treatment of non-small cell lung cancer (NSCLC) expressing the ALK-EML4 (echinoderm microtubule-associated protein-like 4) fusion protein that causes proliferation of NSCLC cells. Inhibition of ALK prevents phosphorylation and subsequent downstream activation of STAT3 and AKT resulting in reduced tumour cell viability. Approved under accelerated approval in 2015, alectinib is indicated for use in patients who have progressed on or were not tolerant of crizotinib, which is associated with the development of resistance. Alectinib is marketed as Alecensa.
Status:
US Approved Rx
(2022)
Source:
ANDA213092
(2022)
Source URL:
First approved in 2015
Source:
NDA206947
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Lenvatinib, developed by Eisai Co., is a receptor tyrosine kinase (RTK) inhibitor that inhibits the kinase activities of vascular endothelial growth factor (VEGF) receptors VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). Lenvatinib also inhibits other RTKs that have been implicated in pathogenic angiogenesis, tumor growth, and cancer progression in addition to their normal cellular functions, including fibroblast growth factor (FGF) receptors FGFR1, 2, 3, and 4; the platelet derived growth factor receptor alpha (PDGFRα), KIT, and RET. These receptor tyrosine kinases (RTKs) located in the cell membrane play a central role in the activation of signal transduction pathways involved in the normal regulation of cellular processes, such as cell proliferation, migration, apoptosis and differentiation, and in pathogenic angiogenesis, lymphogenesis, tumour growth and cancer progression. In particular, VEGF has been identified as a crucial regulator of both physiologic and pathologic angiogenesis and increased expression of VEGF is associated with a poor prognosis in many types of cancers. Lenvatinib is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine (RAI)-refractory differentiated thyroid cancer. Most patients with thyroid cancer have a very good prognosis with treatment (98% 5 year survival rate) involving surgery and hormone therapy. However, for patients with RAI-refractory thyroid cancer, treatment options are limited and the prognosis is poor, leading to a push for the development of more targeted therapies such as lenvatinib. Lenvatinib is marketed under the trade name Lenvima, it is indicated for the treatment of patients with locally recurrent or metastatic, progressive, radioactive iodine-refractory differentiated thyroid cancer.
Status:
US Approved Rx
(2015)
Source:
NDA208065
(2015)
Source URL:
First approved in 2015
Source:
NDA208065
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Osimertinib is an oral, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) drug developed by AstraZeneca Pharmaceuticals. Its use is indicated for the treatment of metastatic non-small cell lung cancer (NSCLC) in cases where tumour EGFR expression is positive for the T790M mutation as detected by FDA-approved testing and which has progressed following therapy with a first-generation EGFR tyrosine kinase inhibitor. Approximately 10% of patients with NSCLC have a rapid and clinically effective response to EGFR-TKIs due to the presence of specific activating EGFR mutations within the tumour cells. More specifically, deletions around the LREA motif in exon 19 and exon 21 L858R point mutations are correlated with response to therapy. Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that binds to certain mutant forms of EGFR (T790M, L858R, and exon 19 deletion) that predominate in non-small cell lung cancer (NSCLC) tumours following treatment with first-line EGFR-TKIs. As a third-generation tyrosine kinase inhibitor, osimertinib is specific for the gate-keeper T790M mutation which increases ATP binding activity to EGFR and results in poor prognosis for late-stage disease. Furthermore, osimertinib has been shown to spare wild-type EGFR during therapy, thereby reducing non-specific binding and limiting toxicity. Osimertinib is marketed under the brand name Tagrisso.
Status:
US Approved Rx
(2019)
Source:
NDA211225
(2019)
Source URL:
First approved in 2014
Source:
ZYKADIA by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Ceritinib is a selective inhibitor of ALK1, a target found in metastatic non-small cell lung cancer (NSCLC). Ceritinib is approved by FDA and is indicated for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer. Ceritinib also targets insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (InsR), and ROS1.
Status:
US Approved Rx
(2022)
Source:
NDA217003
(2022)
Source URL:
First approved in 2013
Source:
NDA205552
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Ibrutinib is an orally bioavailable Bruton's tyrosine kinase (BTK) inhibitor indicated for the treatment of mantle cell lymphoma (MCL) patients that previously received at least one therapy. The drug was jointly developed by Janssen Biotech and Pharmacyclics. Ibrutinib selectively binds to Cys-481 residue in the allosteric inhibitory segment of BTK (TK/SH1 domain), and irreversibly blocks its enzymatic activity thus preventing B-cell activation and signaling, totally blocking the B-cell receptor and cytokine receptor pathways. This leads to an inhibition of the growth of malignant B cells that overexpress BTK. Apart from mantle cell lymphoma Ibrutinib is approved for the treatment of chronic lymphocytic leukemia and Waldenstrom Macroglobulinemia.
Status:
US Approved Rx
(2013)
Source:
NDA201292
(2013)
Source URL:
First approved in 2013
Source:
NDA201292
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Afatinib is a anilino-quinazoline derivative and irreversible antagonist of the receptor tyrosine kinase epidermal growth factor receptor family, with antineoplastic activity. Afatinib selectively and covalently binds to and inhibits the epidermal growth factor receptors 1 (ErbB1; EGFR), 2 (ErbB2; HER2), and 4 (ErbB4; HER4), and certain EGFR mutants, including those caused by EGFR exon 19 deletion mutations or exon 21 (L858R) mutations. This may result in the inhibition of tumor growth and angiogenesis in tumor cells overexpressing these kinases. Additionally, afatinib inhibits the EGFR T790M gatekeeper mutation which is resistant to treatment with first-generation EGFR inhibitors. EGFR, HER2 and HER4 are RTKs that belong to the EGFR superfamily; they play major roles in both tumor cell proliferation and tumor vascularization and are overexpressed in many cancer cell types. Afatinib is a substrate and an inhibitor of P-gp and of the transporter BCRP. Co-administration of P-gp inhibitors can increase afatinib exposure while co-administration of chronic Pgp inducers can decrease afatinib exposure.
Status:
US Approved Rx
(2023)
Source:
NDA217729
(2023)
Source URL:
First approved in 2012
Source:
NDA203341
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Bosutinib (trade name Bosulif) originally synthesized by Wyeth, it is being developed by Pfizer. Bosutinib received US FDA and EU European Medicines Agency approval on September 4, 2012 and 27 March 2013 respectively for the treatment of adult patients with Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML) with resistance, or intolerance to prior therapy. Bosutinib is a synthetic quinolone derivative and dual kinase inhibitor that targets both Abl and Src kinases with potential antineoplastic activity. Unlike imatinib, bosutinib inhibits the autophosphorylation of both Abl and Src kinases, resulting in inhibition of cell growth and apoptosis. Because of the dual mechanism of action, this agent may have activity in resistant CML disease, other myeloid malignancies and solid tumors. Abl kinase is upregulated in the presence of the abnormal Bcr-abl fusion protein which is commonly associated with chronic myeloid leukemia (CML). Overexpression of specific Src kinases is also associated with the imatinib-resistant CML phenotype.
Status:
US Approved Rx
(2020)
Source:
NDA213082
(2020)
Source URL:
First approved in 2012
Source:
NDA203214
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Tofacitinib is an orally available inhibitor of Janus kinases (JAK), with immunomodulatory and anti-inflammatory activities. Upon administration, tofacitinib binds to JAK and prevents the activation of the JAK-signal transducers and activators of transcription (STAT) signaling pathway. This may decrease the production of pro-inflammatory cytokines, such as interleukin (IL)-6, -7, -15, -21, interferon-alpha and -beta, and may prevent both an inflammatory response and the inflammation-induced damage caused by certain immunological diseases. JAK kinases are intracellular enzymes involved in signaling pathways affecting hematopoiesis, immunity and inflammation. Tofacitinib was discovered and developed by the National Institutes of Health and Pfizer. Besides rheumatoid arthritis, tofacitinib has also been studied in clinical trials for the prevention of organ transplant rejection, and the treatment of psoriasis and ulcerative colitis. Patients treated with tofacitinib (XELJANZ) are at increased risk for developing serious infections that may lead to hospitalization or death and adverse reactions. Most patients who developed these infections were taking concomitant immunosuppressants such as methotrexate or corticosteroids.