{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
penicillin v
to a specific field?
Status:
US Approved Rx
(2016)
Source:
ANDA203702
(2016)
Source URL:
First approved in 1984
Source:
ROCEPHIN by HOFFMANN LA ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.
Status:
US Approved Rx
(1984)
Source:
NDA017532
(1984)
Source URL:
First approved in 1984
Source:
NDA017532
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Glyburide, a second-generation sulfonylurea antidiabetic agent, lowers blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may be involved in the mechanism of action of oral sulfonyl-urea hypoglycemic drugs. The combination of glibenclamide and metformin may have a synergistic effect, since both agents act to improve glucose tolerance by different but complementary mechanisms. In addition to its blood glucose lowering actions, glyburide produces a mild diuresis by enhancement of renal free water clearance. Glyburide is twice as potent as the related second-generation agent glipizide. Sulfonylureas such as glyburide bind to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. Glyburide is indicated as an adjunct to diet to lower the blood glucose in patients with NIDDM whose hyperglycemia cannot be satisfactorily controlled by diet alone. Glyburide is available as a generic, is manufactured by many pharmaceutical companies and is sold in doses of 1.25, 2.5 and 5 mg under many brand names including Gliben-J, Daonil, Diabeta, Euglucon, Gilemal, Glidanil, Glybovin, Glynase, Maninil, Micronase and Semi-Daonil. It is also available in a fixed-dose combination drug with metformin that is sold under various trade names, e.g. Bagomet Plus, Benimet, Glibomet, Gluconorm, Glucored, Glucovance, Metglib and many others.
Status:
US Approved Rx
(2010)
Source:
ANDA065496
(2010)
Source URL:
First approved in 1983
Source:
ZINACEF by PAI HOLDINGS PHARM
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefuroxime is a semisynthetic, broad-spectrum, cephalosporin antibiotic. Cefuroxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefuroxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefuroxime has been shown to be active against most isolates of the following bacteria, both in vitro and in clinical infection: Enterobacter spp., Escherichia coli, Klebsiella spp., Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes. Cefuroxime is indicated for the treatment of patients with septicemia, meningitis, gonorrhea, lower respiratory tract, urinary tract, skin and skin-structure, bone and joint infections caused by susceptible strains of the designated organisms.
Status:
US Approved Rx
(2017)
Source:
ANDA207848
(2017)
Source URL:
First approved in 1981
Source:
PIPRACIL by WYETH PHARMS INC
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Piperacillin is a semisynthetic, broad-spectrum, ampicillin derived ureidopenicillin antibiotic which exerts bactericidal activity by inhibiting septum formation and cell wall synthesis of susceptible bacteria. Piperacillin sodium salt is used in combination with the β-lactamase inhibitor tazobactam sodium (ZOSYN®) for the treatment of patients with moderate to severe infections caused by susceptible bacteria.
Status:
US Approved Rx
(2010)
Source:
ANDA090248
(2010)
Source URL:
First approved in 1981
Source:
NDA018276
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Alprazolam, a benzodiazepine, is used to treat panic disorder and anxiety disorder. Unlike chlordiazepoxide, clorazepate, and prazepam, alprazolam has a shorter half-life and metabolites with minimal activity. Alprazolam may have significant drug interactions involving the hepatic cytochrome P-450 3A4 isoenzyme. Clinically, all benzodiazepines cause a dose-related central nervous system depressant activity varying from mild impairment of task performance to hypnosis. Unlike other benzodiazepines, alprazolam may also have some antidepressant activity, although clinical evidence of this is lacking. CNS agents of the 1,4 benzodiazepine class presumably exert their effects by binding at stereo specific receptors at several sites within the central nervous system. Their exact mechanism of action is unknown. Benzodiazepines bind nonspecifically to benzodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABAA) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of the inhibitory neurotransmitter GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Status:
US Approved Rx
(2002)
Source:
ANDA065058
(2002)
Source URL:
First approved in 1979
Source:
CEFACLOR by CEPH INTL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cefaclor is a semisynthetic cephalosporin antibiotic for oral administration. As with other cephalosporins, the bactericidal action of Cefaclor results from inhibition of cell-wall synthesis. Cefaclor is indicated in the treatment of the following infections when caused by susceptible strains of the designated microorganisms: Otitis media caused by Streptococcus pneumoniae, Haemophilus influenzae, staphylococci, and Streptococcus pyogenes; Lower respiratory tract infections, including pneumonia, caused by Streptococcus pneumoniae, Haemophilus influenzae, and Streptococcus pyogenes; Pharyngitis and Tonsillitis, caused by Streptococcus pyogenes; Urinary tract infections, including pyelonephritis and cystitis, caused by Escherichia coli, Proteus mirabilis, Klebsiella spp., and coagulase-negative staphylococci; Skin and skin structure infections caused by Staphylococcus aureus and Streptococcus pyogenes. Adverse effects considered to be related to therapy with cefaclor are: Hypersensitivity reactions, Rarely, reversible hyperactivity, agitation, nervousness, insomnia, confusion, hypertonia, dizziness, hallucinations, somnolence and diarrhea. Patients receiving Cefaclor may show a false-positive reaction for glucose in the urine with tests that use Benedict's and Fehling's solutions and also with Clinitest® tablets. There have been reports of increased anticoagulant effect when Cefaclor and oral anticoagulants were administered concomitantly.
Status:
US Approved Rx
(2009)
Source:
ANDA065414
(2009)
Source URL:
First approved in 1978
Source:
MEFOXIN by MYLAN INSTITUTIONAL
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cefoxitin is a cephamycin antibiotic often grouped with the second-generation cephalosporins. It is active against a broad range of gram-negative bacteria including anaerobes. The methoxy group in the 7a position provides cefoxitin with a high degree of stability in the presence of beta-lactamases, both penicillinases and cephalosporinases, of gram-negative bacteria. The bactericidal action of cefoxitin results from inhibition of cell wall synthesis.
Status:
US Approved Rx
(2007)
Source:
ANDA065352
(2007)
Source URL:
First approved in 1978
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefadroxil is a new semisynthetic cephalosporin with a broad antibacterial spectrum and a high chemotherapeutic potential when administered orally. Many studies have established the efficacy of the administration of once- or twice-daily cefadroxil in the management of infections in the respiratory tract, urinary tract, skin and soft tissues, and bones and joints.
Status:
US Approved Rx
(1985)
Source:
ANDA070101
(1985)
Source URL:
First approved in 1977
Source:
NDA017447
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Disopyramide is an antiarrhythmic drug indicated for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia that are life-threatening. In man, Disopyramide at therapeutic plasma levels shortens the sinus node recovery time, lengthens the effective refractory period of the atrium, and has a minimal effect on the effective refractory period of the AV node. Little effect has been shown on AV-nodal and His-Purkinje conduction times or QRS duration. However, prolongation of conduction in accessory pathways occurs. Disopyramide is a Type 1A antiarrhythmic drug (ie, similar to procainamide and quinidine). It inhibits the fast sodium channels. In animal studies Disopyramide decreases the rate of diastolic depolarization (phase 4) in cells with augmented automaticity, decreases the upstroke velocity (phase 0) and increases the action potential duration of normal cardiac cells, decreases the disparity in refractoriness between infarcted and adjacent normally perfused myocardium, and has no effect on alpha- or beta-adrenergic receptors. It is used for the treatment of documented ventricular arrhythmias, such as sustained ventricular tachycardia, ventricular pre-excitation and cardiac dysrhythmias. It is a Class Ia antiarrhythmic drug.
Status:
US Approved Rx
(2009)
Source:
ANDA078630
(2009)
Source URL:
First approved in 1974
Source:
BRICANYL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Terbutaline is a relatively selective beta2-adrenergic bronchodilator that has little or no effect on alpha-adrenergic receptors. The drug has exerts a preferential effect on beta2-adrenergic receptors but stimulates beta-adrenergic receptors less selectively than relatively selective beta2-agonists. Terbutaline appears to have a greater stimulating effect on beta-receptors of the bronchial, vascular, and uterine smooth muscles (beta2 receptors) than on the beta-receptors of the heart (beta1 receptors). This drug relaxes smooth muscle and inhibits uterine contractions, but may also cause some cardiostimulatory effects and CNS stimulation. The pharmacologic effects of terbutaline are at least in part attributable to stimulation through beta-adrenergic receptors of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic- 3',5'- adenosine monophosphate (c-AMP). Increased c-AMP levels are associated with relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells. Terbutaline is used for the prevention and reversal of bronchospasm in patients 12 years of age and older with reversible, obstructive airway disease, as well as symptomatic management of reversible bronchospasm associated with bronchitis and emphysema. Also used acute IV and sub-Q therapy in selected women to inhibit uterine contractions in preterm labor (tocolysis) and prolong gestation when beneficial.