{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "ATC|ALIMENTARY TRACT AND METABOLISM" in comments (approximate match)
Status:
US Approved Rx
(2017)
Source:
ANDA202294
(2017)
Source URL:
First approved in 1995
Source:
NDA020406
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Dexlansoprazole (trade names Kapidex, Dexilant) is a proton pump inhibitor (PPI) that is marketed by Takeda Pharmaceuticals for the treatment of erosive esophagitis and gastro-oesophageal reflux disease. Dexlansoprazole is used to heal and maintain healing of erosive esophagitis and to treat heartburn associated with gastroesophageal reflux disease (GERD). It lasts longer than lansoprazole, to which it is chemically related, and needs to be taken less often. Dexlansoprazole is supplied for oral administration as a dual delayed-release formulation in capsules and orally disintegrating tablets. The capsules and tablets contain dexlansoprazole in a mixture of two types of enteric-coated granules with different pH-dependent dissolution profiles. The most significant adverse reactions (ā„2%) reported in clinical trials were diarrhea, abdominal pain, nausea, upper respiratory tract infection, vomiting, and flatulence.
Status:
US Approved Rx
(2012)
Source:
ANDA202271
(2012)
Source URL:
First approved in 1995
Source:
PRECOSE by BAYER HLTHCARE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acarbose is an anti-diabetic drug used to treat type 2 diabetes mellitus and, in some countries, prediabetes. Acarbose is an oligosaccharide which is obtained from fermentation processes of a microorganism, Actinoplanes utahensis, and is chemically known as O-4,6-dideoxy¬ 4-[[(1S,4R,5S,6S)-4,5,6-trihydroxy-3-(hydroxymethyl)-2-cyclohexen-1-yl]amino]¬ α-D-glucopyranosyl-(1 ā 4)-O-α-D-glucopyranosyl-(1 ā 4)-D-glucose. Acarbose is a complex oligosaccharide that delays the digestion of ingested carbohydrates, thereby resulting in a smaller rise in blood glucose concentration following meals. As a consequence of plasma glucose reduction, PRECOSE (acarbose tablets) reduces levels of glycosylated hemoglobin in patients with type 2 diabetes mellitus. Systemic non-enzymatic protein glycosylation, as reflected by levels of glycosylated hemoglobin, is a function of average blood glucose concentration over time. In contrast to sulfonylureas, PRECOSE does not enhance insulin secretion. The antihyperglycemic action of acarbose results from a competitive, reversible inhibition of pancreatic alpha-amylase and membrane-bound intestinal alpha-glucoside hydrolase enzymes. Pancreatic alpha-amylase hydrolyzes complex starches to oligosaccharides in the lumen of the small intestine, while the membrane-bound intestinal alpha-glucosidases hydrolyze oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides in the brush border of the small intestine. In diabetic patients, this enzyme inhibition results in a delayed glucose absorption and a lowering of postprandial hyperglycemia. Because its mechanism of action is different, the effect of PRECOSE to enhance glycemic control is additive to that of sulfonylureas, insulin or metformin when used in combination. In addition, PRECOSE diminishes the insulinotropic and weight-increasing effects of sulfonylureas. Acarbose has no inhibitory activity against lactase and consequently would not be expected to induce lactose intolerance.
Status:
US Approved Rx
(2009)
Source:
ANDA077911
(2009)
Source URL:
First approved in 1995
Source:
AMARYL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Glimepiride, like glyburide and glipizide, is a "second-generation" sulfonylurea agents. Glimepiride is used with diet to lower blood glucose by increasing the secretion of insulin from pancreas and increasing the sensitivity of peripheral tissues to insulin. The mechanism of action of glimepiride in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glimepiride likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. This increase in intracellular calcium ion concentration induces the secretion of insulin. Glimepiride is used for concomitant use with insulin for the treatment of noninsulin-dependent (type 2) diabetes mellitus. Glimepiride`s original trade name is Amaryl.
Status:
US Approved Rx
(2009)
Source:
ANDA078202
(2009)
Source URL:
First approved in 1994
Source:
RHINOCORT by ASTRAZENECA
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Status:
US Approved Rx
(2013)
Source:
NDA203389
(2013)
Source URL:
First approved in 1994
Source:
NDA020392
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Cysteamine (trade name CYSTAGON) is a cystine-depleting agent indicated for the treatment of corneal cystine crystal accumulation in patients with cystinosis. Cystinosis is an autosomal recessive inborn error of metabolism in which the transport of cystine out of lysosomes is abnormal; in the nephropathic form, accumulation of cystine and formation of crystals damage various organs, especially the kidney, leading to renal tubular Fanconi Syndrome and progressive glomerular failure, with end-stage renal failure by the end of the first decade of life. In four studies of cystinosis patients before cysteamine was available, renal death (need for transplant or dialysis) occurred at the median age of fewer than 10 years. Patients with cystinosis also experience growth failure, rickets, and photophobia due to cystine deposits in the cornea. With time most organs are damaged, including the retina, muscles and central nervous system. Cysteamine is an aminothiol that participates within lysosomes in a thiol-disulfide interchange reaction converting cystine into cysteine and cysteine-cysteamine mixed disulfide, both of which can exit the lysosome in patients with cystinosis.
Status:
US Approved Rx
(2009)
Source:
ANDA078629
(2009)
Source URL:
First approved in 1993
Source:
KYTRIL by ROCHE
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Granisetron is a selective inhibitor of type 3 serotonergic (5-HT3) receptors. The drug is structurally and pharmacologically related to ondansetron, another selective inhibitor of 5-HT3 receptors. The serontonin 5-HT3 receptors are located on the nerve terminals of the vagus in the periphery, and centrally in the chemoreceptor trigger zone of the area postrema. The temporal relationship between the emetogenic action of emetogenic drugs and the release of serotonin, as well as the efficacy of antiemetic agents suggest that chemotherapeutic agents release serotonin from the enterochromaffin cells of the small intestine by causing degenerative changes in the GI tract. The serotonin then stimulates the vagal and splanchnic nerve receptors that project to the medullary vomiting center, as well as the 5-HT3 receptors in the area postrema, thus initiating the vomiting reflex, causing nausea and vomiting. Granisetron is a potent, selective antagonist of 5-HT3 receptors. The antiemetic activity of the drug is brought about through the inhibition of 5-HT3 receptors present both centrally (medullary chemoreceptor zone) and peripherally (GI tract). This inhibition of 5-HT3 receptors in turn inhibits the visceral afferent stimulation of the vomiting center, likely indirectly at the level of the area postrema, as well as through direct inhibition of serotonin activity within the area postrema and the chemoreceptor trigger zone. Granisetron is used for the prevention of nausea and vomiting associated with initial and repeat courses of emetogenic cancer therapy (including high dose cisplatin), postoperation, and radiation (including total body irradiation and daily fractionated abdominal radiation).
Status:
US Approved Rx
(2007)
Source:
ANDA077430
(2007)
Source URL:
First approved in 1991
Source:
ZOFRAN by SANDOZ
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Ondansetron (ZOFRANĀ®) is a selective 5-HT3 receptor antagonist. It is effective in the treatment of nausea and vomiting caused by radiotherapy, anesthesia, surgery or cytotoxic chemotherapy drugs, including cisplatin, and has reported anxiolytic and neuroleptic properties. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. The released serotonin may stimulate the vagal afferents through the 5-HT3 receptors and initiate the vomiting reflex.
Status:
US Approved Rx
(2005)
Source:
ANDA065154
(2005)
Source URL:
First approved in 1991
Source:
BIAXIN by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Clarithromycin is an antibacterial drug which is used either in combination with lansoprazole and amoxicillin (Prevpac), in combination with omeprazole and amoxicillin (Omeclamox) or alone (Biaxin) for the treatment of broad range of infections. The drug exerts its action by binding to 23s rRNA (with nucleotides in domains II and V). The binding leads to the protein synthesis inhibition and the cell death.
Status:
US Approved Rx
(2011)
Source:
ANDA090618
(2011)
Source URL:
First approved in 1988
Source:
AXID by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Nizatidine, chemically N-[2-[[[2- [(dimethylamino)methyl]-4-thiazolyl]methyl]thio]ethyl]-Nā -methyl-2-nitro-1,1-ethenediamine, is a histamine H2-receptor antagonist.
Nizatidine reduced gastric acid secretion for up to 8 h suggesting that this compound could be used in with a once or twice daily dosage regime. Nizatidine was rapidly and well-absorbed orally, was widely distributed in tissues and the majority of the dose was excreted in the urine within 24 h. Nizatidine is indicated for duodenal and gastric ulcer as well as for the treatment of endoscopically diagnosed esophagitis, including erosive and ulcerative esophagitis, and associated heartburn due to gastroesophageal reflux disease.
Status:
US Approved Rx
(2019)
Source:
ANDA211858
(2019)
Source URL:
First approved in 1987
Source:
NDA019618
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mesalamine, also known as Mesalazine or 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug used to treat inflammation of the digestive tract (Crohn's disease) and mild to moderate ulcerative colitis. Mesalazine is a bowel-specific aminosalicylate drug that is metabolized in the gut and has its predominant actions there, thereby having fewer systemic side effects. As a derivative of salicylic acid, 5-ASA is also an antioxidant that traps free radicals, which are potentially damaging by-products of metabolism. Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. Mesalazine is used for the treatment of active ulcerative proctitis.