U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 41 - 50 of 9777 results

Status:
Investigational
Source:
INN:canfosfamide [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Canfosfamide is a modified glutathione analogue and nitrogen mustard prodrug, with potential antineoplastic activity. Canfosfamide is selectively activated by glutathione S-transferase P1-1 an enzyme that is over-expressed in many human cancers including ovarian cancer. GST P1-1-mediated cleavage leads to an active cytotoxic phosphorodiamidate alkylating metabolite that forms covalent linkages with nucleophilic centers in tumor cell DNA, which may induce a cellular stress response and cytotoxicity, and decrease tumor cell proliferation. Preclinical studies showed that canfosfamide inhibited the growth and was cytotoxic to a wide range of established cancer cell lines including those derived from ovarian cancer (OVCAR3, HEY, SK-OV-3). Canfosfamide treatment inhibited cancer cell proliferation and induced apoptosis through the activation of the cellular stress response kinase pathway. The cytotoxic activity of canfosfamide correlated with the expression of GST P1-1. Cancer cells in which GST expression levels were increased by transfection with the GST P1-1 gene, were more sensitive to the cytotoxic effects of canfosfamide than the parental cell lines Canfosfamide in combination with pegylated liposomal doxorubicin is well tolerated and active in platinum and paclitaxel refractory or resistant ovarian cancer.
Status:
Investigational
Source:
INN:amiselimod [INN]
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amiselimod (MT-1303) is a selective sphingosine 1-phosphate 1 (S1P1 ) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. Amiselimod may be potentially useful for treatment of multiple sclerosis; inflammatory diseases; autoimmune diseases; psoriasis and inflammatory bowel diseases. Amiselimod is currently being developed by Mitsubishi Tanabe Pharma Corporation.
Status:
Investigational
Source:
INN:emzeltrectinib [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:ficonalkib [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Investigational
Source:
INN:sibrafiban
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Sibrafiban (G-7453) is the orally administered, nonpeptide, double-prodrug of Ro 44-3888 which is a selective glycoprotein IIb/IIIa receptor antagonist. Sibrafiban is a double prodrug that undergoes bioconversion to the inactive prodrug Ro 48-3656 and to the active IIb/IIIa antagonist, Ro 44-3888, after oral administration. Sibrafiban was undergoing clinical trials for secondary prevention of cardiac events in patients stabilised after acute coronary syndromes. Sibrafiban has been shown to have comparable efficacy to aspirin in preventing recurrent ischemic events in patients suffering from acute coronary syndromes. Sibrafiban was under development by Genentech and Hoffmann-La Roche, and in phase III trials as an antithrombotic. The development of sibrafiban was discontinued in 1999 following unfavorable Phase III efficacy data.
Status:
Investigational
Source:
INN:rovadicitinib [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Investigational
Source:
INN:ezatiostat [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ezatiostat (TLK199) [γ-glutamyl-S-(benzyl)cysteinyl-R-phenyl glycine diethyl ester] is an inhibitor of Glutathione S-transferase P1–1 (GSTπ). The drug is a peptidomimetic of GSH (glutathione), esterified to enhance cellular uptake and designed to bind to the “G-site” of GSTP1–1. Independent of catalysis inhibition, TLK199 also disrupts the protein:protein interaction site(s) between GSTP1–1 and JNK1. Telik Inc was developing TLK-199 for the potential prevention of myelosuppression in blood diseases, namely myelodysplastic syndrome.
Status:
Investigational
Source:
INN:upleganan [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Dalcetrapib (JTT-705) is a modulator than an inhibitor of cholesteryl ester transfer protein (CETP) activity and it may interact with and decrease CETP activity by a unique mechanism without an off-target effect. Dalcetrapib increased high-density lipoprotein (HDL) cholesterol levels but did not reduce the risk of cardiovascular events. It is in phase III of clinical trials for the treatment of acute coronary syndrome.
Status:
Investigational
Source:
INN:fulzerasib [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)