U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 461 - 470 of 42705 results

Cefixime, an antibiotic, is a third-generation cephalosporin like ceftriaxone and cefotaxime. Cefixime is highly stable in the presence of beta-lactamase enzymes. As a result, many organisms resistant to penicillins and some cephalosporins due to the presence of beta-lactamases, may be susceptible to cefixime. The antibacterial effect of cefixime results from inhibition of mucopeptide synthesis in the bacterial cell wall. Like all beta-lactam antibiotics, cefixime binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefixime interferes with an autolysin inhibitor. Cefixime is sold under the brand name Suprax, indicated for the treatment of: Uncomplicated Urinary Tract Infections Otitis Media Pharyngitis and Tonsillitis Acute Exacerbations of Chronic Bronchitis Uncomplicated Gonorrhea (cervical/urethral)
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Levocarnitine propionate or Propionyl L-carnitine (PLC) is the propionyl ester of L-carnitine. Propionyl-L-carnitine stimulates energy production in ischaemic muscles by increasing citric acid cycle flux and stimulating pyruvate dehydrogenase activity. The free radical scavenging activity of the drug may also be beneficial. Propionyl-L-carnitine improves coagulative fibrinolytic homeostasis in vasal endothelium and positively affects blood viscosity. It exhibits a high affinity for the muscle enzyme, carnitine acyl transferase, and as such readily converts into propionyl-CoA and free carnitine. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. PLC is marketed under the trade name Dromos®. It is indicated for patients with peripheral arterial occlusive disorders and for exercise intolerance enhancement in patients with chronic congestive heart failure. Dromos is marketed in Italy.
Midazolam, previously marketed under the trade name Versed, is a medication used for anesthesia, procedural sedation, trouble sleeping, and severe agitation. Midazolam is a short-acting benzodiazepine central nervous system (CNS) depressant. Pharmacodynamic properties of midazolam and its metabolites, which are similar to those of other benzodiazepines, include sedative, anxiolytic, amnesic and hypnotic activities. Benzodiazepine pharmacologic effects appear to result from reversible interactions with the γ-amino butyric acid (GABA) benzodiazepine receptor in the CNS, the major inhibitory neurotransmitter in the central nervous system. The action of midazolam is readily reversed by the benzodiazepine receptor antagonist, flumazenil. Data from published reports of studies in pediatric patients clearly demonstrate that oral midazolam provides safe and effective sedation and anxiolysis prior to surgical procedures that require anesthesia as well as before other procedures that require sedation but may not require anesthesia. The most commonly reported effective doses range from 0.25 to 1 mg/kg in children (6 months to <16 years). The single most commonly reported effective dose is 0.5 mg/kg. Time to onset of effect is most frequently reported as 10 to 20 minutes. The effects of midazolam on the CNS are dependent on the dose administered, the route of administration, and the presence or absence of other medications.
Amiodarone is an antiarrhythmic with mainly class III properties, but it possesses electrophysiologic characteristics of all four Vaughan Williams classes. Like class I drugs, amiodarone blocks sodium channels at rapid pacing frequencies, and like class II drugs, amiodarone exerts a noncompetitive antisympathetic action. In addition to blocking sodium channels, amiodarone blocks myocardial potassium channels, which contributes to slowing of conduction and prolongation of refractoriness. It is indicated for initiation of treatment and prophylaxis of frequently recurring ventricular fibrillation and hemodynamically unstable ventricular tachycardia in patients refractory to other therapy. The most common adverse reactions (1-2%) leading to discontinuation of intravenous amiodarone therapy are hypotension, asystole/cardiac arrest/pulseless electrical activity, VT, and cardiogenic shock. Other important adverse reactions are, torsade de pointes (TdP), congestive heart failure, and liver function test abnormalities. Fluoroquinolones, macrolide antibiotics, and azoles are known to cause QTc prolongation. There have been reports of QTc prolongation, with or without TdP, in patients taking amiodarone when fluoroquinolones, macrolide antibiotics, or azoles were administered concomitantly. Since amiodarone is a substrate for CYP3A and CYP2C8, drugs/substances that inhibit these isoenzymes may decrease the metabolism and increase serum concentration of amiodarone.
Iohexol is a nonionic, water-soluble radiographic contrast medium. Organic iodine compounds block x-rays as they pass through the body, thereby allowing body structures containing iodine to be delineated in contrast to those structures that do not contain iodine. It is used in myelography, arthrography, nephroangiography, arteriography, and other radiographic procedures. Drugs which lower seizure threshold, especially phenothiazine derivatives including those used for their antihistaminic or antinauseant properties, are not recommended for use with Iohexol. Others include monoamine oxidase (MAO) inhibitors, tricyclic antidepressants, CNS stimulants, psychoactive drugs described as analeptics, major tranquilizers, or antipsychotic drugs. The most frequently reported adverse reactions are headache, mild to moderate pain including backache, neckache and stiffness, nausea, and vomiting.
Enalapril (marketed as Vasotec in the US, Enaladex and Renitec in some other countries) is an angiotensin-converting-enzyme (ACE) inhibitor used in the treatment of hypertension, diabetic nephropathy, and some types of chronic heart failure. Enalapril, after hydrolysis to enalaprilat, inhibits angiotensin-converting enzyme (ACE) in human subjects and animals. ACE is a peptidyl dipeptidase that catalyzes the conversion of angiotensin I to the vasoconstrictor substance, angiotensin II. Angiotensin II also stimulates aldosterone secretion by the adrenal cortex. The beneficial effects of enalapril in hypertension and heart failure appear to result primarily from suppression of the renin-angiotensin-aldosterone system. Inhibition of ACE results in decreased plasma angiotensin II, which leads to decreased vasopressor activity and to decrease aldosterone secretion.
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I). PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.
Ribavirin is a synthetic nucleoside analogue, which was first discovered and developed in 1970 by researchers from the International Chemical & Nuclear Corporation (ICN), today known as Valeant Pharmaceuticals. Ribavirin was initially approved for use in humans to treat pediatric respiratory syncytial virus infections (RSV). In cell cultures the inhibitory activity of ribavirin for RSV is selective. The mechanism of action is unknown. Reversal of the in vitro antiviral activity by guanosine or xanthosine suggests ribavirin may act as an analogue of these cellular metabolites. There were no other significant advancements in the treatment of hepatitis C until 1998, when the combination of ribavirin and interferon-alpha gained approval. Clinically, ribavirin showed a small, additive antiviral effect in combination with interferon, but its main effect was dose-dependent prevention of virological relapse. The mechanism by which the combination of ribavirin and an interferon product exerts its effects against the hepatitis C virus has not been fully established. However, it could be thorough the inhibition of inosine monophosphate dehydrogenase (IMPDH), which is the key step in de novo guanine synthesis, a requirement for viral replication.
Cefotetan is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. It is FDA approved for the treatment of urinary tract infection, lower respiratory tract infection, skin and skin structure infections, gynecologic infection, intra-abdominal infection, and bone and joint infection; and for prophylaxis of postoperative infection. The bactericidal action of cefotetan results from inhibition of cell wall synthesis. The methoxy group in the 7-alpha position provides cefotetan with a high degree of stability in the presence of beta-lactamases including both penicillinases and cephalosporinase of gram-negative bacteria. Common adverse reactions include diarrhea and nausea. As with other cephalosporins, high concentrations of cefotetan may interfere with measurement of serum and urine creatinine levels.