{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for aminosalicylic root_references_citation in Reference Text / Citation (approximate match)
Status:
US Approved Rx
(2009)
Source:
ANDA065520
(2009)
Source URL:
First approved in 1995
Source:
NDA050722
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Mycophenolic acid (MPA) possesses antibacterial, antifungal, antiviral, immunosuppressive and anticancer properties. Mycophenolic acid (MPA) is a fungal metabolite that was initially discovered by Bartolomeo Gosio in 1893 as an antibiotic against anthrax bacillus, Bacillus anthracis. It is an uncompetitive and reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), and therefore inhibits the de novo pathway of guanosine nucleotide synthesis without incorporation to DNA. It was approved under the brand name Myfortic for the prophylaxis of organ rejection in adult patients receiving a kidney transplant and is indicated for the prophylaxis of organ rejection in pediatric patients 5 years of age and older who are at least 6 months post kidney transplant. Myfortic is to be used in combination with cyclosporine and corticosteroids.
Status:
US Approved Rx
(2002)
Source:
ANDA075841
(2002)
Source URL:
First approved in 1991
Source:
AREDIA by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pamidronic acid (Pamidronate Disodium) is a bone resorption inhibitor. The principal pharmacologic action of pamidronate disodium is inhibition of bone resorption. Although the mechanism of
antiresorptive action is not completely understood, several factors are thought to contribute to this action. Pamidronate disodium
adsorbs to calcium phosphate (hydroxyapatite) crystals in bone and may directly block dissolution of this mineral component of bone.
In vitro studies also suggest that inhibition of osteoclast activity contributes to inhibition of bone resorption. In animal studies, at doses
recommended for the treatment of hypercalcemia, pamidronate disodium inhibits bone resorption apparently without inhibiting bone
formation and mineralization. Of relevance to the treatment of hypercalcemia of malignancy is the finding that pamidronate disodium
inhibits the accelerated bone resorption that results from osteoclast hyperactivity induced by various tumors in animal studies. Pamidronate disodium, in conjunction with adequate hydration, is indicated for the treatment of moderate or severe hypercalcemia
associated with malignancy, with or without bone metastases. Pamidronate disodium is indicated for the treatment of patients with moderate to severe Paget’s disease of bone. Pamidronate disodium is indicated, in conjunction with standard antineoplastic therapy, for the treatment of osteolytic bone metastases
of breast cancer and osteolytic lesions of multiple myeloma.
Status:
US Approved Rx
(2008)
Source:
ANDA078671
(2008)
Source URL:
First approved in 1991
Source:
RELAFEN by SMITHKLINE BEECHAM
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Nabumetone is a naphthylalkanone. Is is a non-selective prostaglandin G/H synthase (a.k.a. cyclooxygenase or COX) inhibitor that acts on both prostaglandin G/H synthase 1 and 2 (COX-1 and -2). Prostaglandin G/H synthase catalyzes the conversion of arachidonic acid to prostaglandin G2 and prostaglandin G2 to prostaglandin H2. Prostaglandin H2 is the precursor to a number of prostaglandins involved in fever, pain, swelling, inflammation, and platelet aggregation. The parent compound is a prodrug that undergoes hepatic biotransformation to the active compound, 6-methoxy-2-naphthylacetic acid (6MNA). The analgesic, antipyretic and anti-inflammatory effects of NSAIDs occur as a result of decreased prostaglandin synthesis. The parent compound is a prodrug, which undergoes hepatic biotransformation to the active component, 6-methoxy-2-naphthylacetic acid (6MNA), that is a potent inhibitor of prostaglandin synthesis, most likely through binding to the COX-2 and COX-1 receptors. Nabumetone is used for acute and chronic treatment of signs and symptoms of osteoarthritis and rheumatoid arthritis. Nabumetone has been developed by Beecham. It is available under numerous brand names, such as Relafen, Relifex, and Gambaran.
Status:
US Approved Rx
(2023)
Source:
ANDA216420
(2023)
Source URL:
First approved in 1988
Source:
CARDENE by CHIESI
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Nicardipine is a potent calcium channel blockader with marked vasodilator action used to treat high blood pressure and angina. By deforming the channel, inhibiting ion-control gating mechanisms, and/or interfering with the release of calcium from the sarcoplasmic reticulum, nicardipine inhibits the influx of extracellular calcium across the myocardial and vascular smooth muscle cell membranes The decrease in intracellular calcium inhibits the contractile processes of the myocardial smooth muscle cells, causing dilation of the coronary and systemic arteries, increased oxygen delivery to the myocardial tissue, decreased total peripheral resistance, decreased systemic blood pressure, and decreased afterload.
Status:
US Approved Rx
(2016)
Source:
ANDA207096
(2016)
Source URL:
First approved in 1987
Source:
UCEPHAN by B BRAUN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Phenylacetic acid (abr. PAA and synonyms are: α-toluic acid, benzeneacetic acid, alpha tolylic acid, 2-phenylacetic acid, β-phenylacetic acid) is an organic compound containing a phenyl functional group and acarboxylic acid functional group. Because it is used in the illicit production of phenylacetone (used in the manufacture of substituted amphetamines), it is subject to controls in countries including the United States and China Phenylacetic acid is used in some perfumes, possessing a honey-like odor in low concentrations, and is also used in penicillin G production. It is also employed to treat type II hyperammonemia to help reduce the amounts of ammonia in a patient's bloodstream by forming phenylacetyl-CoA, which then reacts with nitrogen-rich glutamine to form phenylacetylglutamine. This compound is then secreted by the patient's body. In Phase 2 of clinical research it investigated in the treatment of Brain and Central Nervous System Tumors.
Status:
US Approved Rx
(2019)
Source:
ANDA212452
(2019)
Source URL:
First approved in 1987
Source:
NDA019594
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ursodiol tablets, USP are bile acids indicated for the treatment of patients with primary biliary cirrhosis. Ursodiol (Ursodeoxycholic acid), a naturally occurring hydrophilic bile acid, derived from cholesterol, is present as a minor fraction of the total human bile acid pool. Ursodeoxycholic acid reduces elevated liver enzyme levels by facilitating bile flow through the liver and protecting liver cells. The main mechanism if anticholelithic. Although the exact process of ursodiol's anticholelithic action is not completely understood, it is thought that the drug is concentrated in bile and decreases biliary cholesterol by suppressing hepatic synthesis and secretion of cholesterol and by inhibiting its intestinal absorption. The reduced cholesterol saturation permits the gradual solubilization of cholesterol from gallstones, resulting in their eventual dissolution. In addition to the replacement and displacement of toxic bile acids, other mechanisms of action include cytoprotection of the injured bile duct epithelial cells (cholangiocytes) against toxic effects of bile acids, inhibition of apotosis of hepatocytes, immunomodulatory effects, and stimulation of bile secretion by hepatocytes and cholangiocytes. Neither accidental nor intentional overdosing with ursodeoxycholic acid has been reported. Doses of ursodeoxycholic acid in the range of 16-20 mg/kg/day have been tolerated for 6-37 months without symptoms by 7 patients. The LD50 for ursodeoxycholic acid in rats is over 5000 mg/kg given over 7-10 days and over 7500 mg/kg for mice. The most likely manifestation of severe overdose with ursodeoxycholic acid would probably be diarrhea, which should be treated symptomatically.
Status:
US Approved Rx
(2023)
Source:
NDA216974
(2023)
Source URL:
First approved in 1986
Source:
NDA050608
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Sulbactam is a β-lactamase inhibitor given in combination with β-lactam antibiotics to inhibit β-lactamase, an enzyme produced by bacteria that destroys the antibiotics. Sulbactam in combination with semisynthetic antibiotic ampicillin sodium is indicated for the treatment of infections due to susceptible strains of the designated microorganisms: Skin and Skin Structure Infections caused by beta-lactamase producing strains of Staphylococcus aureus, Escherichia coli etc; Intra-Abdominal Infections caused by beta-lactamase producing strains of Escherichia coli, Klebsiella spp. (including K. Pneumoniae) tec; Gynecological Infections caused by beta-lactamase producing strains of Escherichia coli, and Bacteroides spp. (including B. fragilis).
Status:
US Approved Rx
(2017)
Source:
ANDA206713
(2017)
Source URL:
First approved in 1986
Source:
CYKLOKAPRON by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Tranexamic acid is an antifibrinolytic that competitively inhibits the activation of plasminogen to plasmin. Tranexamic acid is a competitive inhibitor of plasminogen activation, and at much higher concentrations, a noncompetitive inhibitor of plasmin, i.e., actions similar to aminocaproic acid. Tranexamic acid is about 10 times more potent in vitro than aminocaproic acid. Tranexamic acid binds more strongly than aminocaproic acid to both the strong and weak receptor sites of the plasminogen molecule in a ratio corresponding to the difference in potency between the compounds. Tranexamic acid in a concentration of 1 mg per mL does not aggregate platelets in vitro. In patients with hereditary angioedema, inhibition of the formation and activity of plasmin by tranexamic acid may prevent attacks of angioedema by decreasing plasmin-induced activation of the first complement protein (C1). Tranexamic acid is used for use in patients with hemophilia for short term use (two to eight days) to reduce or prevent hemorrhage and reduce the need for replacement therapy during and following tooth extraction. It can also be used for excessive bleeding in menstruation, surgery, or trauma cases.
Status:
US Approved Rx
(2023)
Source:
ANDA209351
(2023)
Source URL:
First approved in 1984
Source:
AUGMENTIN '250' by US ANTIBIOTICS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clavulanic acid is produced by the fermentation of Streptomyces clavuligerus. It is a β-lactam
structurally related to the penicillins and possesses the ability to inactivate a wide variety of
β-lactamases by blocking the active sites of these enzymes. Clavulanic acid is particularly active
against the clinically important plasmid-mediated β-lactamases frequently responsible for transferred
drug resistance to penicillins and cephalosporins. Clavulanic acid is used in conjunction with amoxicillin for the treatment of bronchitis and urinary tract, skin, and soft tissue infections caused by beta-lactamase producing organisms. Clavulanic acid competitively and irreversibly inhibits a wide variety of beta-lactamases, commonly found in microorganisms resistant to penicillins and cephalosporins. Binding and irreversibly inhibiting the beta-lactamase results in a restauration of the antimicrobial activity of beta-lactam antibiotics against lactamase-secreting-resistant bacteria. By inactivating beta-lactamase (the bacterial resistance protein), the accompanying penicillin/cephalosporin drugs may be made more potent as well.
Status:
US Approved Rx
(1983)
Source:
NDA018749
(1983)
Source URL:
First approved in 1983
Source:
NDA018749
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Acetohydroxamic acid (also known as AHA or by the trade name Lithostat) is a synthetic drug derived from hydroxylamine and ethyl acetate, is similar in structure to urea. In the urine, it acts as an antagonist of the bacterial enzyme urease. Acetohydroxamic acid is used to lower the level of ammonia in the urine, which may help with some types of urinary infections. Acetohydroxamic Acid has no direct antimicrobial action and does not acidify urine directly. It is used, in addition to antibiotics or medical procedures, to treat chronic urea-splitting urinary infections. In 1983 the US Food and Drug Administration approved acetohydroxamic acid (AHA) as an orphan drug for "prevention of so-called struvite stones" under the newly enacted Orphan Drug Act of 1983.