{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for sulfisoxazole root_names_name in Any Name (approximate match)
Status:
US Approved Rx
(2019)
Source:
ANDA208759
(2019)
Source URL:
First approved in 1979
Source:
CERUBIDINE by WYETH AYERST
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Daunorubicin, also known as daunomycin, is a chemotherapy medication used to treat cancer. Specifically, it is used for acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL), chronic myelogenous leukemia (CML), and Kaposi's sarcoma. Similar to doxorubicin, daunorubicin interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. On binding to DNA, daunomycin intercalates, with its daunosamine residue directed toward the minor groove. It has the highest preference for two adjacent G/C base pairs flanked on the 5' side by an A/T base pair. Daunorubicin should only be administered in a rapid intravenous infusion. It should not be administered intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. It should also never be administered intrathecally (into the spinal canal), as this will cause extensive damage to the nervous system and may lead to death.
Status:
US Approved Rx
(2007)
Source:
ANDA065352
(2007)
Source URL:
First approved in 1978
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Cefadroxil is a new semisynthetic cephalosporin with a broad antibacterial spectrum and a high chemotherapeutic potential when administered orally. Many studies have established the efficacy of the administration of once- or twice-daily cefadroxil in the management of infections in the respiratory tract, urinary tract, skin and soft tissues, and bones and joints.
Status:
US Approved Rx
(2005)
Source:
ANDA065191
(2005)
Source URL:
First approved in 1973
Source:
AMOXIL by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Amoxicillin is one of the widely prescribed antibacterial agents, which was discovered by scientists at Beecham Research Laboratories in 1972. In the US GlaxoSmithKline markets it under the original brand name Amoxil. It is the first line treatment for middle ear infections. It is also used for strep throat, pneumonia, skin infections, and urinary tract infections it is taken by mouth. Amoxicillin inhibits the third and final stage of bacterial cell wall synthesis by preferentially binding to specific penicillin-binding proteins (PBPs) that are located inside the bacterial cell wall. This results in a formation of defective cell wall and a cell death. Common side effects include nausea and rash. It may also increase the risk of yeast infections and, when used in combination with clavulanic acid, diarrhea. It should not be used in those who are allergic to penicillin.
Status:
US Approved Rx
(1988)
Source:
ANDA062831
(1988)
Source URL:
First approved in 1973
Source:
ANCEF by GLAXOSMITHKLINE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefazolin is a semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. By binding to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, cefazolin inhibits the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins. Cefazolin is used to treat bacterial infections of the skin, moderately severe bacterial infections involving the lung, bone, joint, stomach, blood, and urinary tract. It is clinically effective against infections caused by staphylococci and streptococci species of Gram positive bacteria. This drug also can be used for perioperative prophylaxis.
Status:
US Approved Rx
(2012)
Source:
ANDA203853
(2012)
Source URL:
First approved in 1963
Source:
MUCOMYST by APOTHECON
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Acetylcysteine (also known as N-acetylcysteine or N-acetyl-L-cysteine or NAC) is primarily used as a mucolytic agent and in the management of acetaminophen poisoning. Acetylcysteine likely protects the liver by maintaining or restoring the glutathione levels, or by acting as an alternate substrate for conjugation with, and thus detoxification of, the reactive metabolite. Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC) is known to have excellent mucolytic capabilities and is used to treat cystic fibrosis (CF) lung disease. NAC as a precursor to the antioxidant glutathione modulates glutamatergic, neurotrophic, and inflammatory pathways. The potential applications of NAC to facilitate recovery after traumatic brain injury, cerebral ischemia, and in treatment of cerebrovascular vasospasm after subarachnoid hemorrhage. Acetylcysteine serves as a prodrug to L-cysteine, which is a precursor to the biologic antioxidant, glutathione, and hence administration of acetylcysteine replenishes glutathione stores. L-cysteine also serves as a precursor to cystine, which in turn serves as a substrate for the cystine-glutamate antiporter on astrocytes hence increasing glutamate release into the extracellular space. Acetylcysteine also possesses some anti-inflammatory effects possibly via inhibiting NF-κB through redox activation of the nuclear factor kappa kinases thereby modulating cytokine synthesis. NAC is associated with reduced levels of inflammatory cytokines and acts as a substrate for glutathione synthesis. These actions are believed to converge upon mechanisms promoting cell survival and growth factor synthesis, leading to increased neurite sprouting.
Status:
US Approved Rx
(2018)
Source:
ANDA210644
(2018)
Source URL:
First approved in 1950
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Acetaminophen, also known as paracetamol, is commonly used for its analgesic and antipyretic effects. Its therapeutic effects are similar to salicylates, but it lacks anti-inflammatory, antiplatelet, and gastric ulcerative effects. Acetaminophen (USAN) or Paracetamol (INN) is a widely used analgesic and antipyretic drug that is used for the relief of fever, headaches, and other minor aches and pains. It is a major ingredient in numerous cold and flu medications and many prescription analgesics. It is extremely safe in standard doses, but because of its wide availability, deliberate or accidental overdoses are not uncommon. Acetaminophen, unlike other common analgesics such as aspirin and ibuprofen, has no anti-inflammatory properties or effects on platelet function, and it is not a member of the class of drugs known as non-steroidal anti-inflammatory drugs or NSAIDs. At therapeutic doses, acetaminophen does not irritate the lining of the stomach nor affect blood coagulation, kidney function, or the fetal ductus arteriosus (as NSAIDs can). Acetaminophen is thought to act primarily in the CNS, increasing the pain threshold by inhibiting both isoforms of cyclooxygenase, COX-1, COX-2, and COX-3 enzymes involved in prostaglandin (PG) synthesis. Unlike NSAIDs, acetaminophen does not inhibit cyclooxygenase in peripheral tissues and, thus, has no peripheral anti-inflammatory affects. Acetaminophen indirectly blocks COX, and that this blockade is ineffective in the presence of peroxides. This might explain why acetaminophen is effective in the central nervous system and in endothelial cells but not in platelets and immune cells, which have high levels of peroxides. Studies also report data suggesting that acetaminophen selectively blocks a variant of the COX enzyme that is different from the known variants COX-1 and COX-2. This enzyme is now referred to as COX-3. Its exact mechanism of action is still poorly understood, but future research may provide further insight into how it works. The antipyretic properties of acetaminophen are likely due to direct effects on the heat-regulating centers of the hypothalamus resulting in peripheral vasodilation, sweating and hence heat dissipation.
Status:
US Approved OTC
Source:
21 CFR 343.13(b) internal analgesic:rheumatologic aspirin (buffered)
Source URL:
First marketed in 1899
Source:
Aspirin by Friedr. Bayer & Co., Elberfeld, Germany
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Aspirin is a nonsteroidal anti-inflammatory drug. Aspirin is unique in this class of drugs because it irreversibly inhibits both COX-1 and COX-2 activity by acetylating a serine residue (Ser529 and Ser516, respectively) positioned in the arachidonic acid-binding channel, thus inhibiting the synthesis of prostaglandins and reducing the inflammatory response. The drug is used either alone or in combination with other compounds for the treatment of pain, headache, as well as for reducing the risk of stroke and heart attacks in patients with brain ischemia and cardiovascular diseases.
Status:
Investigational
Source:
INN:davelizomib [INN]
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Class (Stereo):
CHEMICAL (ABSOLUTE)
Roxifiban (also known as DMP754), a potent antiplatelet agent in inhibiting platelet aggregation, and has a high specificity and affinity for human platelet glycoprotein IIb/IIIa complex (GPIIb/IIIa) receptors. Roxifiban participated in clinical trials phase III for the treatment of peripheral arterial disorders. This drug was also well tolerated in patients with chronic stable angina pectoris and was studied in the treatment of heparin-induced thrombocytopenia, and thrombosis. However, the development of this drug appears to have been discontinued.
Class (Stereo):
CHEMICAL (ABSOLUTE)
Carafiban is orally active heterocyclic peptide mimetics fibrinogen IIb/IIIa receptor antagonist with antithrombotic activity. Carafiban is a prodrug, that underwent metabolic transformation to active metabolite des-ethyl- Carafiban, that inhibited dose-dependently and reversibly human platelet aggregation. In conscious dogs, Carafiban showed a high plasma availability of the active moiety of 42±8% and a plasma half-life of 9.9 h after oral administration as measured by bioassay. Carafiban may potentially be used for chronic treatment and prophylaxis of thrombotic diseases in humans.