{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "VATC|ANTIBACTERIALS FOR SYSTEMIC USE|OTHER BETA-LACTAM ANTIBACTERIALS" in comments (approximate match)
Status:
Possibly Marketed Outside US
First approved in 2008
Source:
NADA141285
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefovecin is a third generation cephalosporin with a broad-spectrum of activity against Gram-positive and Gram-negative bacteria. Cefovecin differs from other cephalosporins in that it is highly protein bound and has a long duration of activity. As with all cephalosporins, the bactericidal action of cefovecin results from the inhibition of bacterial cell wall synthesis through binding to the penicillin-binding proteins (PBPs). It is indicated for the treatment of skin infections secondary superficial pyoderma, abscesses and wounds. Some gastrointestinal adverse effects like vomiting, anorexia or diarrhea were observed.
Status:
Possibly Marketed Outside US
Source:
NAXCEL Sterile Powder by Yancey, R.J. et al.
Source URL:
First approved in 1988
Source:
NADA140338
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ceftiofur is an antibiotic of the cephalosporin type (third generation), licensed for use in veterinary medicine only. It was first described in 1987. It is marketed by pharmaceutical company Zoetis as Excenel, Naxcel, and Excede and is also the active ingredient in that company's Spectramast LC (lactating cow formulation) and Spectramast DC (dry cow formulation) product. Ceftiofur has worldwide approvals for respiratory disease in swine, ruminants (cattle, sheep and goats) and horses and has also been approved for foot rot and metritis infections in cattle. Ceftiofur has also been approved in various countries for early mortality infections in day-old chicks and turkey poults. Ceftiofur (NAXCEL) is indicated for treatment of bovine respiratory disease (shipping fever, pneumonia) associated with Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. NAXCEL is also indicated for treatment of acute bovine interdigital necrobacillosis (foot rot, pododermatitis) associated with Fusobacterium necrophorum and Bacteroides melaninogenicus.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefozopran hydrochloride is a third-generation cephalosporin that was launched for the treatment of severe infections in immunocompromised patients caused by staphylococci and enterococci. While it shows a very broad antibacterial spectrum against Gram-positive and Gram-negative organisms, it is particularly potent against S. aureus, Enterococcus faecalis, P. aeruginosa, and Citrobacter freundii. It is resistant to hydrolysis by most chromosomal and plasmid mediated β-lactamases and is reported to be active against respiratory, urinary tract, obstetrical, gynecological, soft tissue, and surgical infections. Similar to β-lactams, cephalosporins interfere with PBP (penicillin binding protein) activity involved in the final phase of peptidoglycan synthesis. PBP’s are enzymes which catalyze a pentaglycine crosslink between alanine and lysine residues providing additional strength to the cell wall. Without a pentaglycine crosslink, the integrity of the cell wall is severely compromised and ultimately leads to cell lysis and death. Resistance to cephalosporins is commonly due to cells containing plasmid encoded β-lactamases.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefminox is a broad-spectrum, bactericidal cephalosporin antibiotic. It is especially effective against Gram-negative and anaerobic bacteria. It is indicated in treatment of the following infections caused by sensitive bacteria:
1. Respiratory infections: Amygdalitis, circumtonsillar abscess, bronchitis, bronchiolitis, bronchiectasis (in fection), secondary infections of chronic respiratory diseases, pneumonia, and pulmonary suppuration;
2. Infection in urinary system: Nephropyelitis, cystitis;
3. Infections in abdominal cavity: Cholecystitis' angiocholitis'peritonitis;
4. Infections in pelvic cavity: Pelvic peritonitis, adnexitis, intrauterine infection, inflammation in pelvic dead space, and parametritis;
5. Septicaemia.
Status:
Possibly Marketed Outside US
Source:
NCT04664803: Phase 4 Interventional Terminated Acute Sinusitis
(2015)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cefetamet pivoxil is an oral third-generation cephalosporin which is hydrolysed to form the active agent, cefetamet. Cefetamet has excellent in vitro activity against the major respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella (Branhamella) catarrhalis and group A beta-haemolytic streptococci; it is active against beta-lactamase-producing strains of H. influenzae and M. catarrhalis, but has poor activity against penicillin-resistant S. pneumoniae. Cefetamet has marked activity against Neisseria gonorrhoeae and possesses a broad spectrum of activity against Enterobacteriaceae. Both staphylococci and Pseudomonas spp. are resistant to cefetamet. Cefetamet pivoxil has been investigated in the treatment of both upper and lower community-acquired respiratory tract infections and has demonstrated equivalent efficacy to a number of more established agents, namely cefaclor, amoxicillin and cefixime. In complicated urinary tract infections, cefetamet pivoxil showed similar efficacy to cefadroxil, cefaclor and cefuroxime axetil. Cefetamet pivoxil was effective in the treatment of otitis media, pneumonia, pharyngotonsillitis and urinary tract infections in children. Cefetamet is not extensively bound to plasma proteins. Cefetamet has a relatively small apparent volume of distribution consistent with that of other beta-lactam antibiotics. The absorption and disposition of cefetamet in human subpopulations [i.e. children, elderly (< 75 years of age), renal impairment, liver disease and patients taking concomitant drugs] have been studied extensively. Only impaired renal function appears to significantly alter the elimination of this drug. Cefetamet pivoxil exerts its bactericidal action by inhibition the final transpeptidation step of peptidoglycan synthesis in the bacterial cell wall by binding to one or more of the Penicillin-binding Proteins (PBPs).
Status:
Possibly Marketed Outside US
Source:
Refosporen
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cefazedone is a semisynthetic first-generation cephalosporin with activity against Gram-positive and Gram-negative bacteria. Cefazedone binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis. Unlike other cephalosporins cefazedone possesses good activity against gram-positive bacteria
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Cefodizime is a third-generation cephalosporin with a broad spectrum of antibacterial activity. Administered intravenously or intramuscularly 1 to 4 g of cefodizime daily for an average of 7 to 10 days produces a clinical cure in 80 to 100% of patients (adults, elderly or children) with upper or lower respiratory tract infections or urinary tract infections. In comparative trials cefodizime was as effective as other third generation cephalosporins. A single dose of cefodizime (1 or 2 g) is also useful in treating lower urinary tract infections. Urogenital gonorrhoea, whether caused by beta-lactamase producing or non-beta-lactamase producing Neisseria gonorrhoeae, is very effectively treated by single dose therapy with intramuscular cefodizime. Preliminary data from a small number of patients indicates that cefodizime may also be useful in the treatment of otitis media, sinusitis and gynaecological infections, and for the prophylaxis or treatment of surgical infections. The clinical efficacy of cefodizime compared to other third generation cephalosporins is superior to that predicted from in vitro results. This superior activity of cefodizime may be related to the relatively long elimination half-life of the drug or its ability to modify some functions of the immune system--a potentially important finding awaiting further investigation. Cefodizime is well tolerated and has a tolerability profile similar to other members of its class with systemic adverse events being primarily gastrointestinal or dermatological. Cefodizime may be more convenient to administer than some other agents of its class as it may be given once or twice daily. While there are no trials comparing cefodizime to other third generation cephalosporins in immunosuppressed populations, preliminary information indicates cefodizime may be useful in this group. Cefodizime targets penicillin-binding proteins (PBPs) 1A/B, 2, and 3 resulting in the eventual death of the bacterial cell. In vivo experimental models of infection showed that bacterial clearance by this drug is at least as effective compared with other 3rd generation cephalosporins. It has a similar adverse effect profile to other 3rd generation cephalosporins which is mainly being limited to gastrointestinal or dermatological side effects. It is not currently approved by the FDA for use in the United States.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cefcapene is a semisynthetic third-generation cephalosporin with antibacterial activity. Cefcapene binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
Possibly Marketed Outside US
Source:
Ceftezole sodium for injection by Fujisawa Pharmaceutical
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ceftezole sodium is a cephalosporin antibiotic. Ceftezole was found to be a broad-spectrum antibiotic, active in vitro against many species of gram-positive and gram-negative bacteria except Pseudomonas aeruginosa, Serratia marcescens and Proteus vulgaris. Ceftezole sodium is used as an injectable or through an intravenous mode of delivery. The bactericidal activity of ceftezole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). The PBPs are transpeptidases which are vital in peptidoglycan biosynthesis. Therefore, their inhibition prevents this vital cell wall component from being properly synthesized. Ceftezole has been shown to exhibit potent alpha-glucosidase inhibitory activity. In in vitro alpha-glucosidase assays, ceftezole was shown to be a reversible, non-competitive inhibitor of yeast alpha-glucosidase with a Ki value of 5.78 x 10(-7) M when the enzyme mixture was pretreated with ceftezole. Ceftezole is used for the treatment of susceptible bacterial infections including septicemia, respiratory, biliary or GU tract, skin and skin structure, endocarditis. Surgical prophylaxis.
Status:
Possibly Marketed Outside US
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Panipenem is a parenteral carbapenem antibacterial agent with a broad spectrum of in vitro activity covering a wide range of Gram-negative and Gram-positive aerobic and anaerobic bacteria, including Streptococcus pneumoniae and species producing β-lactamases. Panipenem is coadministered with betamipron (Carbenin, Daiichi Sankyo Company) to inhibit panipenem uptake into the renal tubule and prevent nephrotoxicity. In large, randomised clinical trials, panipenem/betamipron demonstrated good clinical and bacteriological efficacy (similar to that of imipenem/cilastatin) in adults with respiratory tract or urinary tract infections.