U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 31 - 40 of 140 results

Mesalamine, also known as Mesalazine or 5-aminosalicylic acid (5-ASA), is an anti-inflammatory drug used to treat inflammation of the digestive tract (Crohn's disease) and mild to moderate ulcerative colitis. Mesalazine is a bowel-specific aminosalicylate drug that is metabolized in the gut and has its predominant actions there, thereby having fewer systemic side effects. As a derivative of salicylic acid, 5-ASA is also an antioxidant that traps free radicals, which are potentially damaging by-products of metabolism. Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. Mesalazine is used for the treatment of active ulcerative proctitis.
Olsalazine is an anti-inflammatory drug used in the treatment of inflammatory bowel disease such as ulcerative colitis. Orally administered olsalazine is converted to mesalamine which is thought to be the therapeutically active agent in the treatment of ulcerative colitis. The mechanism of action of mesalamine (and sulfasalazine) is unknown but appears to be topical rather than systemic. Mucosal production of arachidonic acid (AA) metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes (LTs) and hydroxyelcosatetraenoic acids (HETEs) is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalamine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin (PG) production in the colon. After oral administration, olsalazine has limited systemic bioavailability. Based on oral and intravenous dosing studies, approximately 2.4% of a single 1.0 g oral dose is absorbed. Less than 1% of olsalazine is recovered in the urine. The remaining 98 to 99% of an oral dose will reach the colon, where each molecule is rapidly converted into two molecules of 5¬ aminosalicylic acid (5-ASA) by colonic bacteria and the low prevailing redox potential found in this environment. The liberated 5-ASA is absorbed slowly resulting in very high local concentrations in the colon. Olsalazine has been evaluated in ulcerative colitis patients in remission, as well as those with acute disease. Both sulfasalazine-tolerant and intolerant patients have been studied in controlled clinical trials. Overall, 10.4% of patients discontinued olsalazine because of an adverse experience compared with 6.7% of placebo patients. The most commonly reported adverse reactions leading to treatment withdrawal were diarrhea or loose stools (olsalazine 5.9%; placebo 4.8%), abdominal pain, and rash or itching (slightly more than 1% of patients receiving olsalazine).
Aztreonam is the first monocyclic beta-lactam antibiotic (monobactam) originally isolated from Chromobacterium violaceum. Aztreonam has a high affinity for the protein-binding protein 3 (PBP-3) of aerobic gram-negative bacteria. Most of these organisms are inhibited and killed at low concentrations of the drug. Aztreonam must be administered as an intravenous or intramuscular injection (AZACTAM®), or inhaled (CAYSTON®). Aztreonam for injection is indicated for the treatment of the following infections caused by susceptible gram-negative microorganisms: urinary tract, lower respiratory tract, skin and skin-structure, intra-abdominal and gynecologic infections as well as for septicemia. Aztreonam for inhalation solution is indicated to improve respiratory symptoms in cystic fibrosis patients with Pseudomonas aeruginosa.
Levocarnitine propionate or Propionyl L-carnitine (PLC) is the propionyl ester of L-carnitine. Propionyl-L-carnitine stimulates energy production in ischaemic muscles by increasing citric acid cycle flux and stimulating pyruvate dehydrogenase activity. The free radical scavenging activity of the drug may also be beneficial. Propionyl-L-carnitine improves coagulative fibrinolytic homeostasis in vasal endothelium and positively affects blood viscosity. It exhibits a high affinity for the muscle enzyme, carnitine acyl transferase, and as such readily converts into propionyl-CoA and free carnitine. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. PLC is marketed under the trade name Dromos®. It is indicated for patients with peripheral arterial occlusive disorders and for exercise intolerance enhancement in patients with chronic congestive heart failure. Dromos is marketed in Italy.
Ceftazidime is a semisynthetic, broad-spectrum, beta-lactam antibiotic, used especially for Pseudomonas and other gram-negative infections in debilitated patients. Ceftazidime is used to treat lower respiratory tract, skin, urinary tract, blood-stream, joint, and abdominal infections, and meningitis. The drug is given intravenously (IV) or intramuscularly (IM) every 8–12 hours (two or three times a day), with dose and frequency varying by the type of infection, severity, and/or renal function of the patient. Injectable formulations of ceftazidime are currently nebulized "off-label" to manage Cystic Fibrosis, non-Cystic Fibrosis bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Ceftazidime is generally well-tolerated. When side effects do occur, they are most commonly local effects from the intravenous line site, allergic reactions, and gastrointestinal symptoms. According to one manufacturer, in clinical trials, allergic reactions including itching, rash, and fever, happened in fewer than 2% of patients. Rare but more serious allergic reactions, such as toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme, have been reported with this class of antibiotics, including ceftazidime. Gastrointestinal symptoms, including diarrhea, nausea, vomiting, and abdominal pain, were reported in fewer than 2% of patients.
Imipenem is a beta-lactam antibiotic belongings to the subgroup of carbapenems. Imipenem has a broad spectrum of activity against aerobic and anaerobic Gram positive as well as Gram negative bacteria. It is particularly important for its activity against Pseudomonas aeruginosa and the Enterococcus species. Imipenem is rapidly degraded by the renal enzyme dehydropeptidase when administered alone, and is always co-administered with cilastatin to prevent this inactivation. The bactericidal activity of imipenem results from the inhibition of cell wall synthesis. Its greatest affinity is for penicillin binding proteins (PBPs) 1A, 1B, 2, 4, 5 and 6 of Escherichia coli, and 1A, 1B, 2, 4 and 5 of Pseudomonas aeruginosa. The lethal effect is related to binding to PBP 2 and PBP 1B. Imipenem is marketed under the brand name Primaxin. PRIMAXIN I.M. (Imipenem and Cilastatin for Injectable Suspension) is a formulation of imipenem (a thienamycin antibiotic) and cilastatin sodium (the inhibitor of the renal dipeptidase, dehydropeptidase I). PRIMAXIN I.M. is a potent broad spectrum antibacterial agent for intramuscular administration.
Dronabinol also known as (−)-trans-delta9-tetrahydrocannabinol is an active ingredient of cannabis. The drug was approved by FDA for the treatment of anorexia in patients with AIDS and chemotherapy-induced nausea and vomiting. Dronabinol exerts its action by activating CB1 and CB2 recepors which makes it a CNS active medicine.
Cefotetan is a semisynthetic cephamycin antibiotic that is administered intravenously or intramuscularly. The drug is highly resistant to a broad spectrum of beta-lactamases and is active against a wide range of both aerobic and anaerobic gram-positive and gram-negative microorganisms. It is FDA approved for the treatment of urinary tract infection, lower respiratory tract infection, skin and skin structure infections, gynecologic infection, intra-abdominal infection, and bone and joint infection; and for prophylaxis of postoperative infection. The bactericidal action of cefotetan results from inhibition of cell wall synthesis. The methoxy group in the 7-alpha position provides cefotetan with a high degree of stability in the presence of beta-lactamases including both penicillinases and cephalosporinase of gram-negative bacteria. Common adverse reactions include diarrhea and nausea. As with other cephalosporins, high concentrations of cefotetan may interfere with measurement of serum and urine creatinine levels.
Glyburide, a second-generation sulfonylurea antidiabetic agent, lowers blood glucose acutely by stimulating the release of insulin from the pancreas, an effect dependent upon functioning beta cells in the pancreatic islets. With chronic administration in Type II diabetic patients, the blood glucose lowering effect persists despite a gradual decline in the insulin secretory response to the drug. Extrapancreatic effects may be involved in the mechanism of action of oral sulfonyl-urea hypoglycemic drugs. The combination of glibenclamide and metformin may have a synergistic effect, since both agents act to improve glucose tolerance by different but complementary mechanisms. In addition to its blood glucose lowering actions, glyburide produces a mild diuresis by enhancement of renal free water clearance. Glyburide is twice as potent as the related second-generation agent glipizide. Sulfonylureas such as glyburide bind to ATP-sensitive potassium channels on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Depolarization stimulates calcium ion influx through voltage-sensitive calcium channels, raising intracellular concentrations of calcium ions, which induces the secretion, or exocytosis, of insulin. Glyburide is indicated as an adjunct to diet to lower the blood glucose in patients with NIDDM whose hyperglycemia cannot be satisfactorily controlled by diet alone. Glyburide is available as a generic, is manufactured by many pharmaceutical companies and is sold in doses of 1.25, 2.5 and 5 mg under many brand names including Gliben-J, Daonil, Diabeta, Euglucon, Gilemal, Glidanil, Glybovin, Glynase, Maninil, Micronase and Semi-Daonil. It is also available in a fixed-dose combination drug with metformin that is sold under various trade names, e.g. Bagomet Plus, Benimet, Glibomet, Gluconorm, Glucored, Glucovance, Metglib and many others.
Ceftriaxone is a broad-spectrum cephalosporin antibiotic with a very long half-life. Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. It is approved for the treatment of lower respiratory tract infections, acute bacterial otitis media, skin infections, urinary tract infections, pelvic inflammatory disease, bacterial septicemia, bone and joint infections, intraabdominal infection, meningitis, and surgical prophylaxis. Common adverse reactions include erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis, pseudomembranous enterocolitis, hemolytic anemia, hypersensitivity reaction, kernicterus, renal failure, and lung injury. Vancomycin, amsacrine, aminoglycosides, and fluconazole are incompatible with Ceftriaxone in admixtures. Precipitation of Ceftriaxone-calcium can occur when Ceftriaxone for Injection is mixed with calcium-containing solutions in the same intravenous administration line.