{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for "Chemical Ingredients [Chemical/Ingredient]|Organic Chemicals [Chemical/Ingredient]" in comments (approximate match)
Status:
US Approved Rx
(2009)
Source:
ANDA077911
(2009)
Source URL:
First approved in 1995
Source:
AMARYL by SANOFI AVENTIS US
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Glimepiride, like glyburide and glipizide, is a "second-generation" sulfonylurea agents. Glimepiride is used with diet to lower blood glucose by increasing the secretion of insulin from pancreas and increasing the sensitivity of peripheral tissues to insulin. The mechanism of action of glimepiride in lowering blood glucose appears to be dependent on stimulating the release of insulin from functioning pancreatic beta cells, and increasing sensitivity of peripheral tissues to insulin. Glimepiride likely binds to ATP-sensitive potassium channel receptors on the pancreatic cell surface, reducing potassium conductance and causing depolarization of the membrane. Membrane depolarization stimulates calcium ion influx through voltage-sensitive calcium channels. This increase in intracellular calcium ion concentration induces the secretion of insulin. Glimepiride is used for concomitant use with insulin for the treatment of noninsulin-dependent (type 2) diabetes mellitus. Glimepiride`s original trade name is Amaryl.
Status:
US Approved Rx
(2023)
Source:
ANDA214512
(2023)
Source URL:
First approved in 1995
Source:
NDA020560
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Alendronic acid is a bisphosphonate drug used for osteoporosis, osteogenesis imperfecta, and several other bone diseases. It is marketed alone as well as in combination with vitamin D. Alendronate inhibits osteoclast-mediated bone-resorption. Like all bisphosphonates, it is chemically related to inorganic pyrophosphate, the endogenous regulator of bone turnover. But while pyrophosphate inhibits both osteoclastic bone resorption and the mineralization of the bone newly formed by osteoblasts, alendronate specifically inhibits bone resorption without any effect on mineralization at pharmacologically achievable doses. Its inhibition of bone-resorption is dose-dependent and approximately 1,000 times stronger than the equimolar effect of the first bisphosphonate drug, etidronate. Under therapy, normal bone tissue develops, and alendronate is deposited in the bone-matrix in a pharmacologically inactive form. For optimal action, enough calcium and vitamin D are needed in the body in order to promote normal bone development. Hypocalcemia should, therefore, be corrected before starting therapy. Treatment of post-menopausal women and people with osteogenesis imperfecta over the age of 22 with alendronic acid has demonstrated normalization of the rate of bone turnover, significant increase in BMD (bone mineral density) of the spine, hip, wrist and total body, and significant reductions in the risk of vertebral (spine) fractures, wrist fractures, hip fractures, and all non-vertebral fractures. In the Fracture Intervention Trial, the women with the highest risk of fracture (by virtue of pre-existing vertebral fractures) were treated with Fosamax 5 mg/day for two years followed by 10 mg/day for the third year. This resulted in approximately 50% reductions in fractures of the spine, hip, and wrist compared with the control group taking placebos. Both groups also took calcium and vitamin D.
Status:
US Approved Rx
(1996)
Source:
NDA020663
(1996)
Source URL:
First approved in 1993
Source:
NDA021307
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Butenafine is a synthetic antifungal agent that is structurally and pharmacologically related to allylamine antifungals. The exact mechanism of action has not been established, but it is suggested that butenafine's antifungal activity is exerted through the alteration of cellular membranes, which results in increased membrane permeability, and growth inhibition. Butenafine is mainly active against dermatophytes and has superior fungicidal activity against this group of fungi when compared to that of terbinafine, naftifine, tolnaftate, clotrimazole, and bifonazole. It is also active against Candida albicans and this activity is superior to that of terbinafine and naftifine. Butenafine also generates low MICs for Cryptococcus neoformans and Aspergillus spp. as well. Butenafine hydrochloride is marketed under the trade names Mentax, Butop (India) and is the active ingredient in Lotrimin Ultra. MENTAX Cream, 1%, is indicated for the topical treatment of tinea (pityriasis)
versicolor due to Malassezia furfur (formerly Pityrosporum orbiculare). Although the mechanism of action has not been fully established, it has been suggested that butenafine, like allylamines, interferes with sterol biosynthesis (especially ergosterol) by inhibiting squalene monooxygenase, an enzyme responsible for converting squalene to 2,3-oxydo squalene. As ergosterol is an essential component of the fungal cell membrane, inhibition of its synthesis results in increased cellular permeability causing leakage of cellular contents. Blockage of squalene monooxygenase also leads to a subsequent accumulation of squalene. When a high concentration of squalene is reached, it is thought to have an effect of directly kill fungal cells. Butenafine cream 1% is indicated in treatment of tinea
pedis, tinea corporis and tinea cruris. In tinea pedis it is
recommended twice daily for 7 days or once daily for
4 weeks. In tinea cruris and tinea corporis it is recommended
once daily for two weeks.
Status:
US Approved Rx
(2007)
Source:
ANDA065409
(2007)
Source URL:
First approved in 1992
Source:
VANTIN by PHARMACIA AND UPJOHN
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Cefpodoxime is an orally administered, extended spectrum, semi-synthetic antibiotic of the cephalosporin class. Cefpodoxime is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Cefpodoxime has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria. Cefpodoxime is indicated for the treatment of patients with mild to moderate infections caused by susceptible strains of the designated microorganisms in the conditions: acute otitis media; pharyngitis and/or tonsillitis; community-acquired pneumonia; acute bacterial exacerbation of chronic bronchitis; gonorrhea; uncomplicated skin and skin structure infections; acute maxillary sinusitis and uncomplicated urinary tract infections (cystitis). Common adverse reactions include diarrhea, nausea, vaginal fungal infections, vulvovaginal infections, abdominal pain, headache. Concomitant administration of high doses of antacids (sodium bicarbonate and aluminum hydroxide) or H2 blockers reduces peak plasma levels by 24% to 42% and the extent of absorption by 27% to 32%, respectively. Oral anti-cholinergics (e.g., propantheline) delay peak plasma levels (47% increase in Tmax), but do not affect the extent of absorption (AUC). Probenecid: As with other beta-lactam antibiotics, renal excretion of cefpodoxime was inhibited by probenecid and resulted in an approximately 31% increase in AUC and 20% increase in peak cefpodoxime plasma levels.
Status:
US Approved Rx
(2019)
Source:
NDA213004
(2019)
Source URL:
First approved in 1992
Source:
NDA050689
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Rifabutin is an antibiotic that inhibits DNA-dependent RNA polymerase activity in susceptible cells. Specifically, it interacts with bacterial RNA polymerase but does not inhibit the mammalian enzyme. It is bactericidal and has a very broad spectrum of activity against most gram-positive and gram-negative organisms (including Pseudomonas aeruginosa) and specifically Mycobacterium tuberculosis. It is FDA approved for the prophylaxis of disseminated Mycobacterium avium complex (MAC) disease in patients with advanced HIV infection. Multiple dosing of rifabutin has been associated with induction of hepatic metabolic enzymes of the CYP3A subfamily. Rifabutin’s predominant metabolite (25-desacetyl rifabutin: LM565), may also contribute to this effect. Similarly, concomitant medications that competitively inhibit the CYP3A activity may increase plasma concentrations of rifabutin. Common adverse reactions include discoloration of skin, rash, diarrhea, disorder of taste, indigestion, loss of appetite, nausea, vomiting, increased liver aminotransferase level (mild), ocular discoloration, uveitis, abnormal color of body fluid.
Status:
US Approved Rx
(2007)
Source:
ANDA078199
(2007)
Source URL:
First approved in 1992
Source:
LAMISIL by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Terbinafine (brand name Lamisil, Terbisil, Terboderm and others) is an antifungal medication used to treat ringworm and fungal nail infections. Terbinafine inhibits ergosterol synthesis by inhibiting squalene epoxidase, an enzyme that is part of the fungal cell membrane synthesis pathway. Because terbinafine prevents the conversion of squalene to lanosterol, ergosterol cannot be synthesized. This is thought to change cell membrane permeability, causing fungal cell lysis. Many side effects and adverse drug reactions have been reported with oral terbinafine hydrochloride possibly due to its extensive biodistribution and the often extended durations involved in antifungal treatment (longer than two months).
Status:
US Approved Rx
(2005)
Source:
ANDA065154
(2005)
Source URL:
First approved in 1991
Source:
BIAXIN by ABBVIE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Clarithromycin is an antibacterial drug which is used either in combination with lansoprazole and amoxicillin (Prevpac), in combination with omeprazole and amoxicillin (Omeclamox) or alone (Biaxin) for the treatment of broad range of infections. The drug exerts its action by binding to 23s rRNA (with nucleotides in domains II and V). The binding leads to the protein synthesis inhibition and the cell death.
Status:
US Approved Rx
(2008)
Source:
ANDA078156
(2008)
Source URL:
First approved in 1991
Source:
AREDIA by NOVARTIS
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pamidronic acid (Pamidronate Disodium) is a bone resorption inhibitor. The principal pharmacologic action of pamidronate disodium is inhibition of bone resorption. Although the mechanism of
antiresorptive action is not completely understood, several factors are thought to contribute to this action. Pamidronate disodium
adsorbs to calcium phosphate (hydroxyapatite) crystals in bone and may directly block dissolution of this mineral component of bone.
In vitro studies also suggest that inhibition of osteoclast activity contributes to inhibition of bone resorption. In animal studies, at doses
recommended for the treatment of hypercalcemia, pamidronate disodium inhibits bone resorption apparently without inhibiting bone
formation and mineralization. Of relevance to the treatment of hypercalcemia of malignancy is the finding that pamidronate disodium
inhibits the accelerated bone resorption that results from osteoclast hyperactivity induced by various tumors in animal studies. Pamidronate disodium, in conjunction with adequate hydration, is indicated for the treatment of moderate or severe hypercalcemia
associated with malignancy, with or without bone metastases. Pamidronate disodium is indicated for the treatment of patients with moderate to severe Paget’s disease of bone. Pamidronate disodium is indicated, in conjunction with standard antineoplastic therapy, for the treatment of osteolytic bone metastases
of breast cancer and osteolytic lesions of multiple myeloma.
Status:
US Approved Rx
(2007)
Source:
ANDA065288
(2007)
Source URL:
First approved in 1990
Source:
IDAMYCIN by PFIZER
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Idarubicin is an antineoplastic in the anthracycline class.Idarubicin hydrochloride is a DNA-intercalating analog of daunorubicin which has an inhibitory effect on nucleic acid synthesis and interacts with the enzyme topoisomerase II. The absence of a methoxy group at position 4 of the anthracycline structure gives the compound a high lipophilicity which results in an increased rate of cellular uptake compared with other anthracyclines.Idarubicin possesses an antitumor effect against a wide spectrum of tumors, either grafted or spontaneous. Idarubicin in combination with other approved antileukemic drugs is indicated for the treatment of acute myeloid leukemia (AML) in adults.
Status:
US Approved Rx
(2019)
Source:
ANDA208201
(2019)
Source URL:
First approved in 1988
Source:
NDA019599
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Naftifine is a synthetic, broad spectrum, antifungal agent and allylamine derivative. The following in vitro data are available, but their clinical significance is unknown. Naftifine has been shown to exhibit fungicidal activity in vitro against a broad spectrum of organisms including Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans, Epidermophyton floccosum, and Microsporum canis, Microsporum audouini, and Microsporum gypseum; and fungistatic activity against Candida species including Candida albicans. However it is only used to treat the organisms listed in the indications. Although the exact mechanism of action against fungi is not known, naftifine appears to interfere with sterol biosynthesis by inhibiting the enzyme squalene 2,3-epoxidase. This inhibition of enzyme activity results in decreased amounts of sterols, especially ergosterol, and a corresponding accumulation of squalene in the cells. Naftifine is used for the topical treatment of tinea pedis, tinea cruris, and tinea corporis caused by the organisms Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Epidermophyton floccosum. Marketed as Naftin.