{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
bempedoic acid
to a specific field?
Status:
US Approved Rx
(2019)
Source:
NDA212306
(2019)
Source URL:
First approved in 2019
Source:
NDA212306
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Selinexor (KPT-330) is a first in class XPO1 antagonist being evaluated in multiple later stage clinical trials in patients with relapsed and/or refractory hematological and solid tumor malignancies.
Status:
US Approved Rx
(2021)
Source:
NDA216157
(2021)
Source URL:
First approved in 2019
Source:
NDA213137
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
GBT440 (previously GTx011) is a potent and direct drug for sickle cell treatment. In sickle cell anemia, abnormal hemoglobin molecules are formed, which causes problems for the flow of blood and oxygen through the body. GBT440 can selectively bind to hemoglobin, thereby increasing its affinity for oxygen. By inhibiting hemoglobin polymerization, it also prevents deformation of the red blood cells. GBT440, renamed Voxelotor, is thought to help prevent sickle cells blocking blood vessels, and therefore reduces pain (sickle cell crisis) experienced by patients. GBT440 is well absorbed following intravenous and oral administration, and quickly partitions into the red blood cell with a small part re‐distributed into the plasma. GBT440 was well tolerated in a randomized, placebo‐controlled, double blind, parallel group phase I/II study in healthy volunteers and sickle cell disease patients. Headache is the most reported adverse event related to the use of this drug, and no serious adverse events are known. A phase 3 clinical trial examining the efficacy and safety of the drug (compared to placebo) is planned to be completed in 2019. Voxelotor was also studied as a potential therapy for treatment of low oxygen levels in the blood of idiopathic pulmonary fibrosis patients, but this program was discontinued because of a lack of clinical benefits.
Status:
US Approved Rx
(2019)
Source:
NDA211672
(2019)
Source URL:
First approved in 2019
Source:
XENLETA by NABRIVA
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
LEFAMULIN is a pleuromutilin antibiotic under development for the treatment of community-acquired bacterial pneumonia, as well as acute bacterial skin and skin structure infections. It inhibits bacterial protein synthesis by binding to the peptidyl transferase center of the 50S ribosome, resulting in the cessation of bacterial growth.
Status:
US Approved Rx
(2019)
Source:
NDA212526
(2019)
Source URL:
First approved in 2019
Source:
NDA212526
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Alpelisib (BYL719) is a PI3Kα-selective inhibitor. PI3K-AKT-mTOR pathway is frequently activated in cancer, therefore investigational PI3K inhibitor alpelisib is considered to be effective as an anticancer agent and has been in clinical development by Novartis. Alpelisib have demonstrated activity in preclinical models of solid tumors and had favorable tolerability profiles, with the most common adverse events consistent with “on-target” inhibition of PI3K in early clinical studies. There are ongoing clinical trials of alpelisib in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme. Combination therapy with other chemo therapeutics may be preferable.
Status:
US Approved Rx
(2019)
Source:
NDA211527
(2019)
Source URL:
First approved in 2019
Source:
NDA211527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Trifarotene is a novel first-in-class fourth-generation topical retinoid. It is a potent and selective RAR gamma-agonist. In multiple mouse models, trifarotene exhibited superior comedolytic, anti-inflammatory and depigmenting activity compared with other topical retinoids. In this 52-week study, trifarotene was safe, well-tolerated and effective in moderate facial and truncal acne. Trifarotene is in phase II clinical trial for the treatment of ichthyosis.
Status:
US Approved Rx
(2019)
Source:
NDA209884
(2019)
Source URL:
First approved in 2019
Source:
NDA209884
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Siponimod (BAF312) is a dual agonist at the sphingosine-1 phosphate receptors, S1PR1 and S1PR5. The S1P receptor is commonly found on the surface of specific cells residing in the central nervous system (CNS), that are responsible for causing CNS damage that drives loss of function in secondary progressive multiple sclerosis (SPMS). Siponimod (BAF312) enters the brain and by binding to these specific receptors, may prevent the activation of these harmful cells, helping to reduce the loss of physical and cognitive function associated with SPMS.
Status:
US Approved Rx
(2019)
Source:
NDA211150
(2019)
Source URL:
First approved in 2019
Source:
NDA211150
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Pitolisant (INN) or tiprolisant (USAN) is a histamine receptor inverse agonist/antagonist selective for the H3 subtype. It has stimulant and nootropic effects in animal studies and may have several medical applications, having been researched for the treatment of narcolepsy, for which it has been granted orphan drug status in the EU and US. It is currently in clinical trials for schizophrenia and Parkinson’s disease. Pitolisant hydrochloride was approved by European Medicine Agency (EMA) on Mar 31, 2016. It was developed and marketed as Wakix® by Bioprojet in EU. Wakix® is available as the tablet for oral use, containing 4.5 mg and 18 mg of Pitolisant hydrochloride. The initial dose of 9 mg (two 4.5 mg, tablets) per day, and it should be used at the lowest effective dose, depending on individual patient response and tolerance, according to an up-titration scheme, without exceeding the dose of 36 mg/day. Pitolisant was the first clinically used H3 receptor inverse agonist.
Status:
US Approved Rx
(2019)
Source:
NDA212839
(2019)
Source URL:
First approved in 2019
Source:
NDA212839
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cenobamate (also known as YKP3089) is a small molecule sodium channel blocker in development for the treatment of partial-onset seizures in adult patients. In mice and rats, Cenobamate displayed an anticonvulsant activity in the maximal electroshock test and prevented seizures induced by chemical convulsants such as pentylenetetrazol and picrotoxin. In addition, Cenobamate was reported to be effective in two models of focal seizure, the hippocampal kindled rat and the mouse 6 Hz psychomotor seizure models. Two completed adequate and well-controlled clinical studies demonstrated a significant reduction in focal seizures with Cenobamate in patients with epilepsy, and a long-term open-label phase 3 safety clinical trial is currently ongoing. Cenobamate is considered a new generation antiepileptic therapy and clinical trials have shown that it may be more effective and safer than existing drugs. If licensed, Cenobamate will offer a new adjunctive treatment option for patients with partial focal epilepsy.
Status:
US Approved Rx
(2019)
Source:
NDA210797
(2019)
Source URL:
First approved in 2019
Source:
NDA210797
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Afamelanotide (SCENESSE) is a synthetic α-melanocyte stimulating hormone analog and first-in-class melanocortin-1 receptor agonist that is approved in the EU for the prevention of phototoxicity in adults with erythropoietic protoporphyria. Afamelanotide differs from endogenous α-melanocyte stimulating hormone at the fourth and seventh amino acid residues, increasing its resistance to immediate degradation and increasing its binding time to melanocortin-1 receptor. Afamelanotide is mimic the pharmacological activity of α-melanocyte stimulating hormone by binding to the melanocortin-1 receptor on melanocytes and activating the synthesis of eumelanin. Eumelanin provides photoprotection through mechanisms including, but not limited to, the absorption and scattering of visible and UV light and antioxidant activity. Afamelanotide increases eumelanin density in healthy volunteers and patients with erythropoietic protoporphyria. In healthy, fair-skinned volunteers, a significant increase in melanin density and skin darkening in both sun-exposed and non-sun-exposed sites was seen with subcutaneous injections of afamelanotide. The most common afamelanotide adverse events included headache and nausea. Common adverse effects include back pain, upper respiratory tract infections, decreased appetite, migraine, and dizziness.
Status:
US Approved Rx
(2019)
Source:
NDA200655
(2019)
Source URL:
First approved in 2019
Source:
NDA200655
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Fluorodopa F-18 is the amino acid analog fluorodopa (FDOPA) labeled with fluorine F 18, a positron-emitting isotope. It is diagnostic PET agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumours and to search for recurrence of viable glioma tissue. Fluorodopa F-18 is able to cross the blood-brain barrier and is taken up by brain tumor cells. As uptake is higher in tumor cells, tumors may then be imaged using positron emission tomography (PET). Assessing tumor uptake of FDOPA may be beneficial for diagnosis, localization and in determining further treatment. The clinical usefulness of Fluorodopa F-18 has been evaluated and recognised in France and subsequently in several EU countries. Fluorodopa F-18 was registered in France in 2006. 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (FDOPA) is a large, neutral amino acid that is transported into presynaptic neurons, where it is converted by the enzyme aromatic aminoacid decarboxylase [AAAD]) into fluorodopamine-(18F), which subsequently enters cathecholamine-storage vesicles. 6-fluoro(18F)-L-dopa crosses the blood-brain barrier; therefore, when injected into the blood stream, it reaches the dopaminergic cells in the brain and is used by the brain as a precursor for dopamine. This makes it possible to monitor intracerebral synthesis and uptake of dopamine by means of the positron-emitting 6-fluoro(18F)-L-3,4-dihydroxyphenylalanine (FDOPA), in conjunction with externally-placed devices suited for detection of annihilation photons, which progressively led to the most recent positron emission tomography (PET) units. Iasodopa, the commercial preparation of FDOPA that obtained a marketing authorisation in France in November 2006 (which is currently recognised by several other EU countries), is a solution for injection. The activity available at time of administration ranges from 0.1 GBq to 0.8 GBq per vial. The half-life of the radionuclide is 109.8 min with emission of positron radiation (Emax: 0.633 MeV) followed by photon annihilation radiations of 0.511 MeV.