U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 38081 - 38090 of 39585 results

Status:
US Previously Marketed
Source:
sodium propionate
(1921)
Source URL:
First marketed in 1921
Source:
sodium propionate
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Propionic acid (PA), also known as propanoic acid, with chemical formula C3H6O2, is an organic acid used as a food additive and found naturally on the skin and in the gastrointestinal tract. It is a byproduct of fermentation reactions and is also produced industrially from ethylene or ethanol and carbon monoxide. Propionic acid is a fungicide and bactericide, registered to controlfungi and bacteria in stored grains, hay, grain storage areas, poultry litter,and drinking water for livestock and poultry. As a food preservative, propionic acid prevents mold in bread and baked goods, and it is used as a flavoring agent in cheese and other packaged goods. The U.S. Environmental Protection Agency considers it safe and therefore, has no limitation on its use. It has been demonstrated that PA lowers fatty acids content in liver and plasma, reduces food intake, exerts immunosuppressive actions and probably improves tissue insulin sensitivity. Thus increased production of PA by the microbiota might be considered beneficial in the context of prevention of obesity and diabetes type 2. The molecular mechanisms by which PA may exert this plethora of physiological effects are slowly being elucidated and include intestinal cyclooxygenase enzyme, the G-protein coupled receptors 41 and 43 and activation of the peroxisome proliferator-activated receptor γ, in turn inhibiting the sentinel transcription factor NF-κB and thus increasing the threshold for inflammatory responses in general. Taken together, PA emerges as a major mediator in the link between nutrition, gut microbiota and physiology. The sodium salt of propionic acid was previously approved in Canada as an active ingredient in Amino-Cerv (used to treat inflammation or injury of the cervix).
Status:
US Previously Marketed
Source:
LENIC WITH NIACIN LINOLEIC ACID by CROOKES-BARNES
(1961)
Source URL:
First marketed in 1921
Source:
linoleic acid
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Linoleic acid is a naturally occurring omega-6 essential fatty acid, present in a variety of foods, including the oils. Linoleic acid is a precursor for arachidonic acid biosynthesis; on the first enzymatic step of the pathway involves delta-6-desaturase, which converts linoleic acid to gamma-lenolenic acid. Linoleic acid has beneficial effects on human skin and hair. Replacement of saturated fat with linoleic acid is advocated to improve serum lipoprotein profiles and reduce the risk of coronary artery disease. Linoleic acid was tested in clinical trilas as a possible remedy against multiple sclerosis.
Status:
US Previously Marketed
Source:
Sodium Hypophosphite U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Sodium Hypophosphite U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Hypophosphite is a strong reducing agent, that has been used in the 1850s as a remedy for pulmonary tuberculosis. Hypophosphites were used extensively in pharmaceutical preparations, elixirs, and tonics. Hypophosphite does not appear to have adverse toxicological effects, and the sodium, calcium, and potassium salts are considered GRAS. Hypophosphite use in foods may not be limited to one function. Hypophosphites have been used in foods as antioxidants, stabilizers, meat pickling accelerator, and vegetable protein flow inducer.
Status:
US Previously Marketed
Source:
Strontium Bromide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strontium Bromide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Strontium ranelate is composed of an organic moiety (ranelic acid) and of two atoms of stable nonradioactive strontium. In vitro, strontium ranelate increases collagen and noncollagenic proteins synthesis by mature osteoblast enriched cells. The effects of strontium ranelate on bone formation were confirmed as strontium ranelate enhanced pre-osteoblastic cell replication. The stimulation by strontium ranelate of the replication of osteoprogenitor cell and collagen, as well as noncollagenic protein synthesis in osteoblasts, provides substantial evidence to categorize strontium ranelate as a bone-forming agent. In the isolated rat osteoclast assay, a pre-incubation of bone slices with strontium ranelate induced a dose- dependent inhibition of the bone resorbing activity of treated rat osteoclast. Strontium ranelate also dose-dependently inhibited, in a chicken bone marrow culture, the expression of both carbonic anhydrase II and the alpha-subunit of the vitronectin receptor. These effects showing that strontium ranelate significantly affects bone resorption due to a direct and/or matrix-mediated inhibition of osteoclast activity and also inhibits osteoclasts differentiation, are compatible with the profile of an anti-resorptive drug. Pharmacological and clinical studies suggest that strontium ranelate optimizes bone resorption and bone formation, resulting in increased bone mass, which may be of great value in the treatment of osteoporosis. Strontium ranelate is approved by EMA for the treatment of severe osteoporosis in postmenopausal women and in adult men.
Status:
US Previously Marketed
Source:
Exsiccated Sodium Sulphite U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Exsiccated Sodium Sulphite U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Sulfites are compounds that contain the sulfite ion. The sulfite ion is the conjugate base of bisulfite. Although its acid is elusive, its salts are widely used. Sulfite is used in the photography industry to protect developing solutions from oxidation, in the pulp and paper industry, in water treatment as an oxygen scavenger agent, as a desulfurizing and dechlorinating agent in the leather industry and as a bleaching agent in textile industry. Sodium sulfite is a component in many pharmaceuticals, which is effective to maintain the potency and stability of drugs. It is added to a number of drug preparations as an antioxidant and antimicrobial agent. Sulfite is used as a food preservative. Topical, oral or parenteral exposure to sulphites has been reported to induce a range of adverse clinical effects in sensitive individuals, ranging from dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhoea to life-threatening anaphylactic and asthmatic reactions. Exposure to the sulphites arises mainly from the consumption of foods and drinks that contain these additives; however, exposure may also occur through the use of pharmaceutical products, as well as in occupational settings. Sulfite is accepted for use as a food additive in Europe. Sodium sulfite is generally recognized as safe by FDA. It is included in FDA Inactive Ingredients Database (epidural, IM, IV, and SC injections; inhalation solution; ophthalmic solutions; oral syrups and suspensions; otic solutions; topical creams and emulsions). Included in nonparenteral medicines licensed in the UK.
Oleic acid is an unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Oleic acid occurs naturally in various animal and vegetable fats and oils. It is a component of the normal human diet as a part of animal fats and vegetable oils. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil. Oleic acid has being shown to have a potential anticancer activity.
Status:
US Previously Marketed
Source:
LENIC WITH NIACIN LINOLEIC ACID by CROOKES-BARNES
(1961)
Source URL:
First marketed in 1921
Source:
linoleic acid
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Linoleic acid is a naturally occurring omega-6 essential fatty acid, present in a variety of foods, including the oils. Linoleic acid is a precursor for arachidonic acid biosynthesis; on the first enzymatic step of the pathway involves delta-6-desaturase, which converts linoleic acid to gamma-lenolenic acid. Linoleic acid has beneficial effects on human skin and hair. Replacement of saturated fat with linoleic acid is advocated to improve serum lipoprotein profiles and reduce the risk of coronary artery disease. Linoleic acid was tested in clinical trilas as a possible remedy against multiple sclerosis.
Status:
US Previously Marketed
Source:
Strontium Bromide U.S.P.
(1921)
Source URL:
First marketed in 1921
Source:
Strontium Bromide U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Conditions:

Strontium ranelate is composed of an organic moiety (ranelic acid) and of two atoms of stable nonradioactive strontium. In vitro, strontium ranelate increases collagen and noncollagenic proteins synthesis by mature osteoblast enriched cells. The effects of strontium ranelate on bone formation were confirmed as strontium ranelate enhanced pre-osteoblastic cell replication. The stimulation by strontium ranelate of the replication of osteoprogenitor cell and collagen, as well as noncollagenic protein synthesis in osteoblasts, provides substantial evidence to categorize strontium ranelate as a bone-forming agent. In the isolated rat osteoclast assay, a pre-incubation of bone slices with strontium ranelate induced a dose- dependent inhibition of the bone resorbing activity of treated rat osteoclast. Strontium ranelate also dose-dependently inhibited, in a chicken bone marrow culture, the expression of both carbonic anhydrase II and the alpha-subunit of the vitronectin receptor. These effects showing that strontium ranelate significantly affects bone resorption due to a direct and/or matrix-mediated inhibition of osteoclast activity and also inhibits osteoclasts differentiation, are compatible with the profile of an anti-resorptive drug. Pharmacological and clinical studies suggest that strontium ranelate optimizes bone resorption and bone formation, resulting in increased bone mass, which may be of great value in the treatment of osteoporosis. Strontium ranelate is approved by EMA for the treatment of severe osteoporosis in postmenopausal women and in adult men.
Silver iodide is an inorganic compound with the formula AgI. It is used as a photosensitive agent in photography, as a local antiseptic, as a chemical intermediate, and in cloud seeding for rain-making. The major hazards encountered in the use and handling of silver iodide stem from its toxicologic properties. Effects from exposure may include skin rashes, conjunctivitis, argyria (a permanent ashen-gray discoloration of skin, conjunctiva, and internal organs), headache, fever, hypersensitivity, laryngitis, and bronchitis.
Status:
US Previously Marketed
Source:
Antimony Oxide N.F.
(1921)
Source URL:
First marketed in 1921
Source:
Antimony Oxide N.F.
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Stibophen (Fuadin), an organic trivalent antimony compound, has been used for many years in the treatment of schistosomiasis. Stibophen is used as treatment of schistosomiasis by intramuscular injection. Stibophen is known to act by selectively inhibiting worm PFK.

Showing 38081 - 38090 of 39585 results