{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
angiotensin ii
to a specific field?
Status:
Investigational
Source:
NCT04049669: Phase 2 Interventional Recruiting Glioblastoma
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Indoximod is an orally available Indoleamine 2,3-dioxigenase inhibitor. It shows higher potency in reversing IDO-mediated T cell suppression. Indoximod improves the efficacy of multiple chemotherapeutics agents and some immunological checkpoints mediators in Phase I/II clinical studies for metastatic breast cancer, metastatic melanoma, non-small cell lung cancer, primary malignant brain tumors, metastatic pancreatic cancer, as well as metastatic prostate cancer.
Status:
Investigational
Source:
NCT04524351: Phase 1/Phase 2 Interventional Completed Alzheimer Disease
(2020)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Phenserine, a derivative of physostigmine, was first described as an inhibitor of acetylcholinesterase (AChE) and was shown to improve cognition in various experimental paradigms in rodents and dogs. It was clinically tested for Alzheimer's disease, with moderate success in initial Phase II studies. Phenserine is also unique because of differing actions of its enantiomers: (-)-phenserine is the active enantiomer for inhibition of AChE, whereas ( )-phenserine (Posiphen®) has weak activity as an AChE inhibitor and can be dosed much higher. Posiphen® is a small, hydrophobic, orally available molecule that enters the brain readily. It is the only drug ever described that inhibits more than one neurotoxic aggregating protein. Posiphen® inhibits synthesis of amyloid precursor protein (APP), tau and α-Synuclein. mRNA translation of neurotoxic aggregating proteins is up-regulated by iron (Fe) and down-regulated by iron regulatory protein-1 (IRP1). Posiphen® interferes with this second step of the common cascade of the aggregating proteins. It enhances the binding and/or activity of IRP1 to the iron response element (IRE) stem loop in the 5’UTR of the mRNAs of neurotoxic aggregating proteins, therefore specifically lowering their synthesis. By potentiating the IRE/IRP1 complex, Posiphen® lowers the level of free mRNA to be translated by the ribosome. Posiphen® is in development for the treatment neurodegenerative diseases.
Status:
Investigational
Source:
NCT03189914: Phase 1/Phase 2 Interventional Completed Metastatic Pancreatic Cancer
(2017)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Fluorocyclopentenylcytosine (RX-3117) is a novel small molecule nucleoside compound that is incorporated into DNA or RNA of cancer cells and inhibits both
DNA and RNA synthesis which induces apoptotic cell death of tumor cells. Fluorocyclopentenylcytosine also mediates the down-regulation of DNA
methyltransferase 1 (DNMT1), an enzyme responsible for the methylation of cytosine residues on newly synthesized DNA and
also a target for anticancer therapies. Preclinical studies have shown Fluorocyclopentenylcytosine to be effective in both inhibiting the growth of
various human cancer xenograft models, including colon, lung, renal and pancreas, as well as overcoming chemotherapeutic
drug resistance.
Fluorocyclopentenylcytosine has demonstrated a broad spectrum anti-tumor activity against 50 different human cancer cell lines and efficacy in 12
different mouse xenograft models. The efficacy in the mouse xenograft models was superior to that of gemcitabine. In addition,
in human cancer cell lines made resistant to the anti-tumor effects of gemcitabine, Fluorocyclopentenylcytosine still retains its full anti-tumor
activity.
In August 2012, Rexahn reported the completion of an exploratory Phase I clinical trial of Fluorocyclopentenylcytosine in cancer patients conducted
in Europe, to investigate the oral bioavailability, safety and tolerability of the compound. In this study, oral administration of Fluorocyclopentenylcytosine demonstrated an oral bioavailability of 34-58% and a plasma half-life (T1/2) of 14 hours. In addition, Fluorocyclopentenylcytosine was safe
and well tolerated in all subjects throughout the dose range tested. Fluorocyclopentenylcytosine is in phase I/II clinical trials by Rexahn for the treatment of bladder cancer and pancreatic cancer. This compound was granted Orphan Drug Designation by the U.S. Food and Drug Administration (FDA) for the treatment of patients with pancreatic cancer in September 2014.
Status:
Investigational
Source:
NCT00563433: Phase 3 Interventional Completed Diabetic Foot Ulcers
(1994)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Pexiganan is a 22-amino-acid synthetic cationic peptide. It is an analog of magainin 2, which is a host defense peptide isolated from frog skin. The drug is thought to act by disturbing the permeability of the cell membrane or cell wall. Pexiganan exhibited in vitro broad-spectrum antibacterial activity when it was tested against 3,109 clinical isolates of gram-positive and gram-negative, anaerobic and aerobic bacteria. It is currently in phase 3 clinical trials as a topical antimicrobial agent for the treatment of mild infections associated with diabetic foot ulcers. In vitro data for pexiganan acetate suggest that the drug does have hemolytic activity at concentrations relevant for antibacterial activity. In association with tigecycline, pexiganan administration could overcome antibiotic resistance and increase the effectiveness of treatment against P. aeruginosa sepsis.
Status:
Investigational
Source:
NCT04103060: Phase 2 Interventional Completed Vitiligo
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Cerdulatinib is an oral, dual spleen tyrosine kinase (Syk) and janus kinase (JAK) inhibitor that uniquely inhibits two key cell signaling pathways that promote cancer cell growth in certain hematologic malignancies – the B-cell receptor pathway via Syk and key cytokine receptors via JAK Being developed to treat patients with hematologic cancers, specifically those who have relapsed or who have not responded to prior therapies. Cerdulatinib is in Phase 2 study evaluating the safety and efficacy of cerdulatinib in patients with relapsed/refractory B-cell malignancies who have failed multiple therapies.
Status:
Investigational
Source:
NCT04092452: Phase 2 Interventional Completed Acne Inversa
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
PF-06700841 is an inhibitor of JAK1 and TYK2 kinases. PF-06700841 tosylate salt is potentially a treatment of systemic lupus erythematosus and plaque psoriasis.
Status:
Investigational
Source:
NCT04122625: Phase 1/Phase 2 Interventional Completed Solid Tumor
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
AT-406 (DEBIO-1143, SM-406), is a potent and orally bioavailable Smac mimetic and an antagonist of the inhibitor of apoptosis proteins (IAPs). AT-406 inhibits cancer cell growth in various human cancer cell lines. It has good oral bioavailability in mice, rats, non-human primates, and dogs, is highly effective in induction of apoptosis in xenograft tumors, and is capable of complete inhibition of tumor growth. Debiopharm under a licence from Ascenta Therapeutics is developing AT-406 for the treatment of cancers.
Status:
Investigational
Source:
NCT04066244: Phase 2 Interventional Terminated Amyotrophic Lateral Sclerosis
(2019)
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
BLZ 945, an orally active antagonist of the colony-stimulating factor1
receptor (CSF1R), is being developed by Novartis and Celgene Corporation for the treatment of advanced solid tumors and tumor-induced osteolytic lesions in bone and skeletal-related events. Phase I/II development for solid tumors is underway in the US, Italy, Spain, and Singapore. Preclinical trials were ongoing for tumor-induced osteolysis in Europe and the US. However, no recent reports of development had been identified for this indication.
Status:
Investigational
Source:
NCT01740336: Phase 2 Interventional Completed Breast Cancer
(2013)
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Pictilisib is an oral potent inhibitor of class I PI3K with nanomolar activities against p110alpha, p110beta, p110delta, and p110gamma. The drug was developed for the treatment of solid tumors and reached phase II in patients with breast cancer and lung carcinoma, however its development was terminated.
Status:
Investigational
Class (Stereo):
CHEMICAL (ABSOLUTE)