U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 697 results


Class (Stereo):
CHEMICAL (ACHIRAL)


Lanthanum hydroxide (La(OH)3) is a rare novel earth compound which has so far been fabricated with various morphologies such as nanopowders, nanotubes, nanowires, nanorods and nanobelts from different methods like solvothermal, hydrothermal, sol-gel and template assisted routes. This compound has many attractive applications in gas-exhaust convectors, optical coatings, catalysts, superconductors, hydrogen storage materials and next generation of high dielectric constant gate dielectrics. It is a useful carrier precipitate for a number of ions. It was applied to the collection of traces of aluminum, bismuth, gold, iridium, iron, lead, thallium and titanium in silver metal. It is a predecessor Lanthanum oxide, which has a great interest as catalyst material.
Caspofungin is an echinocandin antifungal drug, which is approved and is sold under the brand worldwide name cancidas. Caspofungin inhibits the synthesis of beta (1,3)-D-glucan, an essential component of the cell wall of susceptible Aspergillus species and Candida species. Beta (1,3)-D-glucan is not present in mammalian cells. Cancidas is indicated for the treatment of candidemia and the following candida infections: intra-abdominal abscesses, peritonitis, and pleural space infections in adult and pediatric patients. Also is indicated for the treatment of esophageal candidiasis in adult and pediatric patients and for the treatment of invasive aspergillosis in adult and pediatric patients, but has not been studied as initial therapy for invasive aspergillosis.
Dutasteride is a synthetic 4-azasteroid compound that is a selective inhibitor of both the type 1 and type 2 isoforms of steroid 5 alpha-reductase (5AR), intracellular enzymes that convert testosterone to 5 alpha-dihydrotestosterone (DHT). Type I 5a-reductase is predominant in the sebaceous glands of most regions of skin, including scalp, and liver. Type I 5a-reductase is responsible for approximately one-third of circulating DHT. The Type II 5a-reductase isozyme is primarily found in prostate, seminal vesicles, epididymides, and hair follicles as well as liver, and is responsible for two-thirds of circulating DHT. Dutasteride inhibits the conversion of testosterone to 5 alpha-dihydrotestosterone (DHT), which is the androgen primarily responsible for the initial development and subsequent enlargement of the prostate gland. Testosterone is converted to DHT by the enzyme 5 alpha-reductase, which exists as 2 isoforms, type 1 and type 2. Dutasteride is a competitive and specific inhibitor of both type 1 and type 2 5 alpha-reductase isoenzymes, with which it forms a stable enzyme complex. Dissociation from this complex has been evaluated under in vitro and in vivo conditions and is extremely slow. Used for the treatment of symptomatic benign prostatic hyperplasia (BPH) in men with an enlarged prostate gland to improve symptoms, and reduce the risk of acute urinary retention and the need for surgery. Marketed under the brand name Avodart.
Lopinavir (ABT-378) is an antiretroviral of the protease inhibitor class. It is used against HIV infections as a fixed-dose combination with another protease inhibitor, ritonavir, under the trade names Kaletra.

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cetrorelix is a synthetic decapeptide with gonadotropin-releasing hormone (GnRH) antagonistic activity. GnRH induces the production and release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) from the gonadotrophic cells of the anterior pituitary. Due to a positive estradiol (E2) feedback at midcycle, GnRH liberation is enhanced resulting in an LH-surge. This LH-surge induces the ovulation of the dominant follicle, resumption of oocyte meiosis and subsequently luteinization as indicated by rising progesterone levels. Cetrorelix competes with natural GnRH for binding to membrane receptors on pituitary cells and thus controls the release of LH and FSH in a dose-dependent manner. Cetrorelix binds to the gonadotropin releasing hormone receptor and acts as a potent inhibitor of gonadotropin secretion. It competes with natural GnRH for binding to membrane receptors on pituitary cells and thus controls the release of LH and FSH in a dose-dependent manner. Cetrorelix is marketed primarily under the brand name Cetrotide. Cetrotide (cetrorelix acetate for injection) is indicated for the inhibition of premature LH surges in women undergoing controlled ovarian stimulation.
Ganirelix (N-acetyl-3-(2-naphthyl)-D-alanyl-4-chloro-D-phenylalanyl-3-(3-pyridyl)-D-alanyl-L-seryl-L-tyrosyl-N9 ,N10-diethyl-D-homoarginyl-L-leucylN9 ,N10-diethyl-L-homoarginyl-L-prolyl-D-acrylamide) is a synthetic decapeptide with high antagonistic activity against naturally occurring gonadotropin-releasing hormone (GnRH). Ganirelix Acetate Injection is indicated for the inhibition of premature luteinizing hormone (LH) surges in women undergoing controlled ovarian hyperstimulation. Ganirelix is administered by a subcutaneous injection of 250 µg once per day during the mid to late follicular phase of a woman’s menstrual cycle. Treatment should start on the 5th or 6th day after the start of ovarian stimulation, and the mean duration of its use is five days. Clinical studies have shown that the most common side effect is a slight reaction at the site of injection in the form of redness, and sometimes swelling. Clinical studies have shown that, one hour after injection, the incidence of at least one moderate or severe local skin reaction per treatment cycle was 12% in 4 patients treated with Ganirelix and 25% in patients treated subcutaneously with a GnRH agonist. The local reactions generally disappear within 4 hours after administration. Other reported side effects are some that are known to be associated with ovarian hyperstimulation, including gynecological abdominal pain, headache, vaginal bleeding, nausea, and gastrointestinal abdominal pain.
Exemestane is an oral steroidal aromatase inhibitor used in the adjuvant treatment of hormonally-responsive (also called hormone-receptor-positive, estrogen-responsive) breast cancer in postmenopausal women. It acts as a false substrate for the aromatase enzyme, and is processed to an intermediate that binds irreversibly to the active site of the enzyme causing its inactivation. Breast cancer cell growth may be estrogen-dependent. Aromatase (exemestane) is the principal enzyme that converts androgens to estrogens both in pre- and postmenopausal women. While the main source of estrogen (primarily estradiol) is the ovary in premenopausal women, the principal source of circulating estrogens in postmenopausal women is from conversion of adrenal and ovarian androgens (androstenedione and testosterone) to estrogens (estrone and estradiol) by the aromatase enzyme in peripheral tissues. Estrogen deprivation through aromatase inhibition is an effective and selective treatment for some postmenopausal patients with hormone-dependent breast cancer. Exemestane is an irreversible, steroidal aromatase inactivator, structurally related to the natural substrate androstenedione. It acts as a false substrate for the aromatase enzyme, and is processed to an intermediate that binds irreversibly to the active site of the enzyme causing its inactivation, an effect also known as "suicide inhibition". Exemestane significantly lowers circulating estrogen concentrations in postmenopausal women, but has no detectable effect on the adrenal biosynthesis of corticosteroids or aldosterone. This reduction in serum and tumor concentrations of estrogen delays tumor growth and disease progression. Exemestane has no effect on other enzymes involved in the steroidogenic pathway up to a concentration at least 600 times higher than that inhibiting the aromatase enzyme. Exemestane is marketed under the trade name Aromasin.
Budesonide is a glucocorticoid used in the management of asthma, the treatment of various skin disorders, allergic rhinitis and ulcerative colitis. The precise mechanism of corticosteroid actions on inflammation in asthma is not well known. Inflammation is an important component in the pathogenesis of asthma. Corticosteroids have been shown to have a wide range of inhibitory activities against multiple cell types (e.g., mast cells, eosinophils, neutrophils, macrophages, and lymphocytes) and mediators (e.g., histamine, eicosanoids, leukotrienes, and cytokines) involved in allergic- and non-allergic-mediated inflammation. The anti-inflammatory actions of corticosteroids may contribute to their efficacy in asthma. Commonly reported side effects of budesonide include: acne vulgaris, moon face, and bruise. Other side effects include: ankle edema, hirsutism, weakness, arthralgia, nausea, and rhinitis. Ketoconazole, a potent inhibitor of cytochrome P450 (CYP) isoenzyme 3A4 (CYP3A4), the main metabolic enzyme for corticosteroids, increased plasma levels of orally ingested budesonide.
Sumatriptan is a serotonin (5-HT1B/1D) receptor agonist indicated for acute treatment of migraine with or without aura in adults. Sumatriptan is structurally similar to serotonin (5-HT), and is a 5-HT receptor (types 5-HT1D and 5-HT1B) agonist. The specific receptor subtypes it activates are present on the cranial arteries and veins. Acting as an agonist at these receptors, sumatriptan reduces the vascular inflammation associated with migraines. The specific receptor subtype it activates is present in the cranial and basilar arteries. Activation of these receptors causes vasoconstriction of those dilated arteries. Sumatriptan is also shown to decrease the activity of the trigeminal nerve, which presumably accounts for sumatriptan's efficacy in treating cluster headaches. The injectable form of the drug has been shown to abort a cluster headache within 30 minutes in 77% of cases. Sumatriptan is effective for ending or relieving the intensity of migraine and cluster headaches. It is most effective taken early after the start of the pain. Injected sumatriptan is more effective than other formulations. Large doses of sumatriptan can cause sulfhemoglobinemia, a rare condition in which the blood changes from red to greenish-black, due to the integration of sulfur into the hemoglobin molecule. Serious cardiac events, including some that have been fatal, have occurred following the use of sumatriptan injection or tablets. Events reported have included coronary artery vasospasm, transient myocardial ischemia, myocardial infarction, ventricular tachycardia, and ventricular fibrillation (V-Fib).
Paroxetine, also known by the trade names Paxil and Seroxat. PAXIL (paroxetine hydrochloride) is an orally administered psychotropic drug. It is the hydrochloride salt of a phenylpiperidine compound identified chemically as (-)-trans-4R-(4'fluorophenyl)-3S-[(3',4'-methylenedioxyphenoxy) methyl] piperidine hydrochloride hemihydrate. It is used to treat major depressive disorder, obsessive-compulsive disorder, social anxiety disorder, panic disorder, posttraumatic stress disorder, generalized anxiety disorder and premenstrual dysphoric disorder. Paroxetine is a potent and highly selective inhibitor of neuronal serotonin reuptake. Paroxetine likely inhibits the reuptake of serotonin at the neuronal membrane, enhances serotonergic neurotransmission by reducing turnover of the neurotransmitter, therefore it prolongs its activity at synaptic receptor sites and potentiates 5-HT in the CNS; paroxetine is more potent than both sertraline and fluoxetine in its ability to inhibit 5-HT reuptake. Compared to the tricyclic antidepressants, SSRIs have dramatically decreased binding to histamine, acetylcholine, and norepinephrine receptors. The mechanism of action for the treatment of vasomotor symptoms is unknown. Paroxetine, a phenylpiperidine derivative, was originally developed in 1975 by Jorgen Buus-Lassen and associates working in a small Danish company Ferrosan. Paroxetine was the second SSRI synthesized by Buus-Lassen In 1975.