U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 1284 results

Dronedarone is an antiarrhythmic that is FDA approved for the treatment of atrial fibrillation in patients in sinus rhythm with a history of paroxysmal or persistent atrial fibrillation (AF). Dronedarone is multichannel blocker. Common adverse reactions include abdominal pain, diarrhea, indigestion, nausea, vomiting, asthenia and raised serum creatinine. Dronedarone has potentially important pharmacodynamics interactions: Digoxin: Consider discontinuation or halve dose of digoxin before treatment and monitor; Calcium channel blockers (CCB): Initiate CCB with low dose and increase after ECG verification of tolerability; Beta-blockers: May provoke excessive bradycardia, Initiate with low dose and increase after ECG verification of tolerability.

Class (Stereo):
CHEMICAL (ACHIRAL)



Febuxostat (ULORIC) is a novel, xanthine oxidase/dehydrogenase (XO/XDH) inhibitor being developed by Teijin, TAP Pharmaceuticals, and Ipsen for the treatment of gout. The currently available XO inhibitor, allopurinol, has been associated with serious instances of severe hypersensitivity, in some cases leading to fatalities. There is some suggestion that febuxostat is less prone to excacerbate systemic inflammatory events in animal studies. Febuxostat, a xanthine oxidase inhibitor, achieves its therapeutic effect by decreasing serum uric acid. Febuxostat is not expected to inhibit other enzymes involved in purine and pyrimidine synthesis and metabolism at therapeutic concentrations. Febuxostat is used for the treatment of hyperuricemia in patients with gout.
Iloperidone, also known as Fanapt, Fanapta, and previously known as Zomaril, is an atypical antipsychotic for the treatment of schizophrenia. Iloperidone shows high affinity and maximal receptor occupancy for dopamine D2 receptors in the caudate nucleus and putamen of the brains of schizophrenic patients. The improvement in cognition is attributed to iloperidone's high affinity for α adrenergic receptors. Iloperidone also binds with high affinity to serotonin 5-HT2a and dopamine 3 receptors. Iloperidone binds with moderate affinity to dopamine D4, serotonin 5-HT6 and 5-HT7, and norepinephrine NEα1 receptors. Furthermore, iloperidone binds with weak affinity to serotonin 5-HT1A, dopamine D1, and histamine H1 receptors. Iloperidone is indicated for the treatment of acute schizophrenia.
Nilotinib (AMN107, trade name Tasigna) is a kinase inhibitor indicated for the treatment of chronic phase and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia (CML) in adult patients resistant to or intolerant to prior therapy that included imatinib. Nilotinib is an inhibitor of the Bcr-Abl kinase. Nilotinib binds to and stabilizes the inactive conformation of the kinase domain of Abl protein. In vitro, nilotinib inhibited Bcr-Abl mediated proliferation of murine leukemic cell lines and human cell lines derived from Ph+ CML patients. Under the conditions of the assays, nilotinib was able to overcome imatinib resistance resulting from Bcr-Abl kinase mutations, in 32 out of 33 mutations tested. In vivo, nilotinib reduced the tumor size in a murine Bcr-Abl xenograft model. Nilotinib inhibited the autophosphorylation of the following kinases at IC50 values as indicated: Bcr-Abl (20-60 nM), PDGFR (69 nM) and c-Kit (210 nM). Nilotinib is currently being trialed in people with Parkinson's disease, as it appears to be able to halt progression of the disease and even improve their symptoms. The drug also has a number of adverse effects typical of anti-cancer drugs: a headache, fatigue, gastrointestinal problems such as nausea, vomiting, diarrhea and constipation, muscle and joint pain, rash and other skin conditions, flu-like symptoms, and reduced blood cell count. Less typical side effects are those of the cardiovascular system, such as hypertension (high blood pressure), various types of arrhythmia, and prolonged QT interval. Interaction of nilotinib with OATP1B1 and OATP1B3 may alter its hepatic disposition and can lead to transporter mediated drug-drug interactions. Nilotinib is an inhibitor of OATP-1B1 transporter but not for OATP-1B3. Main metabolic pathways identified in healthy subjects are oxidation and hydroxylation. Nilotinib is the main circulating component in the serum. None of the metabolites contributes significantly to the pharmacological activity of nilotinib.
Status:
First approved in 2006

Class (Stereo):
CHEMICAL (RACEMIC)


Conditions:

Ranolazine is a metabolic modulator developed by Syntex (Roche) and sold under the trade name Ranexa by Gilead Sciences. Ranexa has antianginal and anti-ischemic effects that do not depend upon reductions in heart rate or blood pressure. The mechanism of action of ranolazine is unknown. It does not increase the rate-pressure product, a measure of myocardial work, at maximal exercise. In vitro studies suggest that ranolazine is a P-gp inhibitor. Ranolazine is believed to have its effects via altering the trans-cellular late sodium current. It is by altering the intracellular sodium level that ranolazine affects the sodium-dependent calcium channels during myocardial ischemia. Thus, ranolazine indirectly prevents the calcium overload that causes cardiac ischemia. Because Ranexa prolongs the QT interval, it should be reserved for patients who have not achieved an adequate response with other antianginal drugs. Ranexa should be used in combination with amlodipine, beta-blockers or nitrates. The effect on angina rate or exercise tolerance appeared to be smaller in women than men.
Sorafenib (BAY 43-9006), marketed as Nexavar by Bayer, is a drug approved for the treatment of advanced renal cell carcinoma (primary kidney cancer, hepatocellular carcinoma and for the treatment of patients with locally recurrent or metastatic, progressive, differentiated thyroid carcinoma (DTC) that is refractory to radioactive iodine treatment. It has also received "Fast Track" designation by the FDA for the treatment of advanced hepatocellular carcinoma (primary liver cancer), and has since performed well in Phase III trials. Sorafenib was shown to interact with multiple intracellular (CRAF, BRAF and mutant BRAF) and cell surface kinases (KIT, FLT- 3, VEGFR- 2, VEGFR- 3, and PDGFR- ß). Several of these kinases are thought to be involved in angiogenesis. Thus, sorafenib may inhibit tumor growth by a dual mechanism, acting either directly on the tumor (through inhibition of Raf and Kit signaling) and/or on tumor angiogenesis (through inhibition of VEGFR and PDGFR signaling). Sorafenib inhibited tumor growth of the murine renal cell carcinoma, RENCA, and several other human tumor xenografts in athymic mice. A reduction in tumor angiogenesis was seen in some tumor xenograft models.
Lenalidomide (trade name Revlimid) is a derivative of thalidomide introduced in 2004. It is an immunomodulatory agent with anti-angiogenic properties. Revlimid in combination with dexamethasone is indicated for the treatment of patients with multiple myeloma (MM) who have received at least one prior therapy. Also is indicated for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities. In addition, Revlimid is indicated for the treatment of patients with mantle cell lymphoma (MCL) whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. The mechanism of action of lenalidomide remains to be fully characterized. Lenalidomide inhibited the secretion of pro-inflammatory cytokines and increased the secretion of anti-inflammatory cytokines from peripheral blood mononuclear cells. Lenalidomide causes a delay in tumor growth in some in vivo nonclinical hematopoietic tumor models including multiple myeloma. Immunomodulatory properties of lenalidomide include activation of T cells and natural killer (NK) cells, increased numbers of NKT cells, and inhibition of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. In multiple myeloma cells, the combination of lenalidomide and dexamethasone synergizes the inhibition of cell proliferation and the induction of apoptosis. Recently was discovered, that protein cereblon (CRBN) is a proximate, therapeutically important molecular target of lenalidomide. Low CRBN expression was found to correlate with drug resistance in multiple myeloma (MM) cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by (immune-modulatory drugs) treatment. CRBN is also implicated in several effects of immunomodulatory drugs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the immunomodulatory drugs (IMiDs) are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. Lenalidomide also inhibited the expression of cyclooxygenase-2 (COX-2) but not COX-1 in vitro.
Status:
First approved in 2002

Class (Stereo):
CHEMICAL (ABSOLUTE)

Targets:


Oxaliplatin (brand name Eloxatin), a new generation of platinum derivatives discovered by Prof Kidani in 1976 at Nagoya University in Japan, was licensed-in and developed by Debiopharm. Eloxatin is typically administered in combination with fluorouracil and leucovorin for the adjuvant treatment of stage III colon cancer and for the treatment of advanced carcinoma of the colon or rectum. Oxaliplatin undergoes nonenzymatic conversion in physiologic solutions to active derivatives via displacement of the labile oxalate ligand. Several transient reactive species are formed, including monoaquo and diaquo 1,2-diaminocyclohexane (DACH) platinum, which covalently bind with macromolecules. Both inter- and intrastrand Pt-DNA crosslinks are formed. Crosslinks are formed between the N7 positions of two adjacent guanines (GG), adjacent adenine-guanines (AG), and guanines separated by an intervening nucleotide (GNG). These crosslinks inhibit DNA replication and transcription. Cytotoxicity is cell-cycle nonspecific.
Aripiprazole is the first next-generation atypical antipsychotic. The unique actions of aripiprazole in humans are likely a combination of "functionally selective" activation of D(2) (and possibly D(3))-dopamine receptors and serotonin 5-HT(1A) receptors, coupled with inhibition of 5-HT(2A) receptors. Aripiprazole was approved by FDA (Abilify trade name) for the treatment of schizophrenia; manic and mixed episodes associated with bipolar I disorder; major depressive disorder; irritability associated with autistic disorder; Tourette’s disorder and agitation associated with schizophrenia or bipolar mania.