U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 21 - 30 of 31 results

Amdinocillin is a novel, semisynthetic penicillin effective against many gram-negative bacteria. The antibacterial activity of amdinocillin is derived from its ability to bind specifically and avidly to Penicillin Binding Protein-2 (PBP 2). Amdinocillin is active alone against many gram-negative organisms. Pseudomonas and non-fermenting gram-negative bacteria, however, are usually resistant. Amdinocillin, in combination with many beta-lactams, exhibits marked synergy against many enterobacteriaceae. No such synergy can be demonstrated for gram-positive organisms or pseudomonas species. Amdinocillin is not beta-lactamase stable. Organisms which produce high levels of plasma-mediated beta-lactamase are resistant to the drug. Used in the treatment of urinary tract infections caused by some strains of E. coli and klebsiella and enterobacter species. Used mainly against Gram negative organisms. Amdinocillin is not available in the United States.
Amdinocillin is a novel, semisynthetic penicillin effective against many gram-negative bacteria. The antibacterial activity of amdinocillin is derived from its ability to bind specifically and avidly to Penicillin Binding Protein-2 (PBP 2). Amdinocillin is active alone against many gram-negative organisms. Pseudomonas and non-fermenting gram-negative bacteria, however, are usually resistant. Amdinocillin, in combination with many beta-lactams, exhibits marked synergy against many enterobacteriaceae. No such synergy can be demonstrated for gram-positive organisms or pseudomonas species. Amdinocillin is not beta-lactamase stable. Organisms which produce high levels of plasma-mediated beta-lactamase are resistant to the drug. Used in the treatment of urinary tract infections caused by some strains of E. coli and klebsiella and enterobacter species. Used mainly against Gram negative organisms. Amdinocillin is not available in the United States.
Status:
Possibly Marketed Outside US
Source:
Japan:Tebipenem pivoxil
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tebipenem pivoxil is an oral carbapenem prodrug that was originated by Wyeth (now Pfizer). It was approved by Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on Apr 22, 2009. It was developed and marketed as Orapenem® by Meiji Seika in Japan. Tebipenem pivoxil is a broad-spectrum orally-administered antibiotic, from the carbapenem subgroup of β-lactam antibiotics. Carbapenems are a class of beta-lactam antibiotics, which act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. It is used to treat otorhinolaryngological infection, otitis media and bacterial pneumonia. Orapenem® is available as granules for oral use, containing 100 mg Tebipenem pivoxil/g granules. According to the weight of children, 4 mg/kg, and twice a day after dinner.
Status:
Possibly Marketed Outside US
Source:
Japan:Tebipenem pivoxil
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Tebipenem pivoxil is an oral carbapenem prodrug that was originated by Wyeth (now Pfizer). It was approved by Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on Apr 22, 2009. It was developed and marketed as Orapenem® by Meiji Seika in Japan. Tebipenem pivoxil is a broad-spectrum orally-administered antibiotic, from the carbapenem subgroup of β-lactam antibiotics. Carbapenems are a class of beta-lactam antibiotics, which act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. It is used to treat otorhinolaryngological infection, otitis media and bacterial pneumonia. Orapenem® is available as granules for oral use, containing 100 mg Tebipenem pivoxil/g granules. According to the weight of children, 4 mg/kg, and twice a day after dinner.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefteram Pivoxil
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefteram is a semisynthetic cephalosporin formulated for oral administration as the prodrug ester, cefteram pivoxil. The mechanism of action of cefteram is inhibition of bacterial cell wall synthesis. Cefteram exerts its bactericidal activity by strongly binding to penicillin-binding protein (PBP) 3, 1A, and 1Bs. The drug is available in Japan and is used for the treatment of bacterial infections.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefcapene Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefcapene is a semisynthetic third-generation cephalosporin with antibacterial activity. Cefcapene binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefetamet Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefetamet pivoxil is an oral third-generation cephalosporin which is hydrolysed to form the active agent, cefetamet. Cefetamet has excellent in vitro activity against the major respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella (Branhamella) catarrhalis and group A beta-haemolytic streptococci; it is active against beta-lactamase-producing strains of H. influenzae and M. catarrhalis, but has poor activity against penicillin-resistant S. pneumoniae. Cefetamet has marked activity against Neisseria gonorrhoeae and possesses a broad spectrum of activity against Enterobacteriaceae. Both staphylococci and Pseudomonas spp. are resistant to cefetamet. Cefetamet pivoxil has been investigated in the treatment of both upper and lower community-acquired respiratory tract infections and has demonstrated equivalent efficacy to a number of more established agents, namely cefaclor, amoxicillin and cefixime. In complicated urinary tract infections, cefetamet pivoxil showed similar efficacy to cefadroxil, cefaclor and cefuroxime axetil. Cefetamet pivoxil was effective in the treatment of otitis media, pneumonia, pharyngotonsillitis and urinary tract infections in children. Cefetamet is not extensively bound to plasma proteins. Cefetamet has a relatively small apparent volume of distribution consistent with that of other beta-lactam antibiotics. The absorption and disposition of cefetamet in human subpopulations [i.e. children, elderly (< 75 years of age), renal impairment, liver disease and patients taking concomitant drugs] have been studied extensively. Only impaired renal function appears to significantly alter the elimination of this drug. Cefetamet pivoxil exerts its bactericidal action by inhibition the final transpeptidation step of peptidoglycan synthesis in the bacterial cell wall by binding to one or more of the Penicillin-binding Proteins (PBPs).
Status:
Possibly Marketed Outside US
Source:
Japan:Cefcapene Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefcapene is a semisynthetic third-generation cephalosporin with antibacterial activity. Cefcapene binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefetamet Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefetamet pivoxil is an oral third-generation cephalosporin which is hydrolysed to form the active agent, cefetamet. Cefetamet has excellent in vitro activity against the major respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella (Branhamella) catarrhalis and group A beta-haemolytic streptococci; it is active against beta-lactamase-producing strains of H. influenzae and M. catarrhalis, but has poor activity against penicillin-resistant S. pneumoniae. Cefetamet has marked activity against Neisseria gonorrhoeae and possesses a broad spectrum of activity against Enterobacteriaceae. Both staphylococci and Pseudomonas spp. are resistant to cefetamet. Cefetamet pivoxil has been investigated in the treatment of both upper and lower community-acquired respiratory tract infections and has demonstrated equivalent efficacy to a number of more established agents, namely cefaclor, amoxicillin and cefixime. In complicated urinary tract infections, cefetamet pivoxil showed similar efficacy to cefadroxil, cefaclor and cefuroxime axetil. Cefetamet pivoxil was effective in the treatment of otitis media, pneumonia, pharyngotonsillitis and urinary tract infections in children. Cefetamet is not extensively bound to plasma proteins. Cefetamet has a relatively small apparent volume of distribution consistent with that of other beta-lactam antibiotics. The absorption and disposition of cefetamet in human subpopulations [i.e. children, elderly (< 75 years of age), renal impairment, liver disease and patients taking concomitant drugs] have been studied extensively. Only impaired renal function appears to significantly alter the elimination of this drug. Cefetamet pivoxil exerts its bactericidal action by inhibition the final transpeptidation step of peptidoglycan synthesis in the bacterial cell wall by binding to one or more of the Penicillin-binding Proteins (PBPs).
Status:
Possibly Marketed Outside US
Source:
Japan:Cefcapene Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefcapene is a semisynthetic third-generation cephalosporin with antibacterial activity. Cefcapene binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis.

Showing 21 - 30 of 31 results