{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
m didanosine
to a specific field?
Status:
Possibly Marketed Outside US
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
(2021)
Source URL:
First approved in 2021
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Honokiol is a biphenolic natural product isolated from the bark and leaves of Magnolia plant spp. Honokiol possesses anti-carcinogenic, anti-inflammatory, anti-oxidative, anti-angiogenic as well as the inhibitory effect on malignant transformation of papillomas to carcinomas in vitro and in vivo animal models without any appreciable toxicity. Honokiol affects multiple signaling pathways, molecular and cellular targets including nuclear factor-κB (NF-κB), STAT3, epidermal growth factor receptor (EGFR), cell survival signaling, cell cycle, cyclooxygenase and other inflammatory mediators, etc. Honokiol can permeate the blood-brain barrier and the blood-cerebrospinal fluid to increase its bioavailability in neurological tissues. Diverse studies have provided evidence on the neuroprotective effect of honokiol in the central nervous system, due to its potent antioxidant activity, and amelioration of the excitotoxicity mainly related to the blockade of glutamate receptors and reduction in neuroinflammation. Honokiol can attenuate neurotoxicity exerted by abnormally aggregated Abeta in Alzheimer's disease. Honokiol is being developed by Huons as HL tablet for the treatment of alcoholic and non-alcoholic fatty liver.
Status:
Possibly Marketed Outside US
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
(2021)
Source URL:
First approved in 2021
Source:
Hepad S5 by YOUNGJIN Korean Medicine Clinic
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Peoniflorin (PF) is the chief active component of paeonia, with diverse pharmacological actions and wide application. According to current study findings, PF can ameliorate the decline of memory and learning capacities in many dementia model animals, and have effect in protecting the cerebral ischemia injury, treating Parkinson's disease, reliving pain and improving neural synapse plasticity. Peoniflorin is an Adenosine A1 receptor activator with neuroprotective and antidepressant effects. Upregulates serotonergic systems in vivo. Blood brain barrier permeable. Preclinical studies show that peoniflorin is able to diminish pain, joint swelling, synovial hypertrophy, and the severity of bone erosion and cartilage degradation in experimental arthritis. In China, Korea, and Japan, a decoction of the dried root without bark of Paeonia lactiflora Pall. has been used in the treatment of rheumatoid arthritis, systemic lupus erythematosus, hepatitis, dysmenorrhea, muscle cramping and spasms, and fever for more than 1200 years. A water/ethanol extract of the root is now known as total glucosides of peony (TGP), which contains more than 15 components. Peoniflorin is the most abundant ingredient and accounts for the pharmacological effects observed with TGP in both in vitro and in vivo studies.
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2021)
Source URL:
First approved in 2021
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Jasmone is a natural organic compound extracted from the volatile portion of the oil from jasmine flowers. The natural extract contains only the cis form, while the synthetic material is often a mixture containing both forms, with the cis form predominating. Commercially it is used primarily in perfumes and cosmetics. Some studies on rodents had shown that cis-jasmine had a tranquillizing effect on the brain, possibly through the GABA-A receptors response.
Status:
Possibly Marketed Outside US
Source:
M020
(2021)
Source URL:
First approved in 2021
Source:
M020
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2021)
Source URL:
First approved in 2021
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Cifostodine is 2',3'-cyclic pyrimidine nucleotide formed during digestion of ribonucleic acid by ribonuclease. Cifostodine was recently identified in certain mammalian tissues such as the brain and kidney.
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Safrole is a natural product obtained from essential oil of the root bark of Sassafras tree. Safrole has been used as a flavoring agent in drugs and in the manufacture of heliotropin, perfumes, soaps, and piperonyl butoxide. Oil of sassafras, which contains safrole, was formerly used to flavor some soft drinks, such as root beer. However, this use or any other addition of safrole or oil of sassafras to food was banned in the United States in 1960 due to evidence of carcinogenicity. Numerous studies have shown that safrole from betel quid-containing safrole might be involved in the pathogenesis of hepatocellular carcinoma in human due to the formation of DNA adducts. Safrole has also been used in the illicit production of the drug 3,4-methylenedioxymethamphetamine (MDMA, or ecstasy), and the U.S. Drug Enforcement Administration has designated safrole a List I Chemical. Anticancer and anti-diabetic properties of safrole were investigated in vitro and in vivo.
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 333E
(2020)
Source URL:
First approved in 2020
Source:
21 CFR 333E
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Status:
Possibly Marketed Outside US
Source:
21 CFR 333A
(2020)
Source URL:
First approved in 2020
Source:
21 CFR 333A
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)