{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
fludrocortisone acetate
to a specific field?
Status:
US Approved Rx
(2010)
Source:
NDA200327
(2010)
Source URL:
First approved in 2010
Source:
NDA200327
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Status:
US Approved Rx
(2021)
Source:
ANDA207939
(2021)
Source URL:
First approved in 2010
Source:
NDA022527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Fingolimod (FTY720) is a sphingosine 1-phosphate receptor modulator indicated and approved for the treatment of relapsing-remitting multiple sclerosis. Fingolimod (trade name Gilenya, Novartis) is metabolized by sphingosine kinase to the active metabolite, fingolimod-phosphate. Fingolimod-phosphate
is a sphingosine 1-phosphate receptor modulator, and binds with high affinity to sphingosine 1-phosphate receptors 1, 3,
4, and 5. Fingolimod-phosphate blocks the capacity of lymphocytes to egress from lymph nodes, reducing the number of
lymphocytes in peripheral blood. The mechanism by which fingolimod exerts therapeutic effects in multiple sclerosis is
unknown, but may involve reduction of lymphocyte migration into the central nervous system. Fingolimod was approved as a first-in-class, orally active drug for relapsing multiple sclerosis in 2010, and its applications in other disease conditions are currently under clinical trials.
Status:
US Approved Rx
(2010)
Source:
NDA200327
(2010)
Source URL:
First approved in 2010
Source:
NDA200327
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Conditions:
Ceftaroline is a fifth-generation broad-spectrum cephalosporin with potent antimicrobial activity against Gram-positive and Gram-negative pathogens. Ceftaroline is the bioactive metabolite of ceftaroline fosamil, an N-phosphonoamino water-soluble cephalosporin prodrug, which is rapidly converted in vivo upon the hydrolysis of the phosphonate group by plasma phosphatises. Ceftaroline fosamil is being developed by Forest Laboratories, under a license from Takeda. In 2010, the U.S. Food and Drug Administration (FDA) approved ceftaroline fosamil for use in the treatment of acute bacterial skin and skin structure infections as well as community-acquired pneumonia. Ceftaroline has bactericidal activity against methicillin-resistant Staphylococcus aureus, therefore serving as an attractive alternative agent for the treatment of methicillin-resistant Staphylococcus aureus bacteremia when approved agents are contraindicated or treatment failures have occurred. Like other β-lactams, ceftaroline’s mechanism of action is mediated by binding to the penicillin-binding protein (PBP), the enzyme mediating the cross-linking transpeptidation of the peptidoglycan which are the terminal steps in completing formation of the bacterial cell wall. MRSA strains have a mutated PBP2a which prohibits β-lactam antibiotics from accessing its active site that mediates the transpeptidation reaction. Ceftaroline possesses an ethoxyimino side-chain mimicking a portion of a cell wall structure, which acts as a “Trojan horse”, allosterically opening and facilitating access to the active site of the PBP2a. Based on clinical trial data to date, ceftaroline appears to be safe and well-tolerated. Since ceftaroline is a cephalosporin, it has caused serious hypersensitivity reactions in patients who are allergic to cephalosporins and among some patients with penicillin allergies.
Status:
US Approved Rx
(2010)
Source:
NDA022474
(2010)
Source URL:
First approved in 2010
Source:
NDA022474
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Ulipristal acetate (also known as CDB-2914 and PGL4001 and trade name Ella in the U.S) is a novel oral emergency contraceptive designed and developed by HRA Pharma. It is a selective progesterone receptor modulator, which reversibly blocks the progesterone receptors in target tissues it was approved in May 2009 by the European Commission and in August 2010 by the FDA as safe and effective in preventing unintended pregnancy for up to 120 hours – or five days – post- unprotected intercourse or contraceptive failure. Ella is not intended for routine use as a contraceptive. When taken immediately before ovulation is to occur, ella postpones follicular rupture. The likely primary mechanism of action of ulipristal acetate for emergency contraception is therefore inhibition or delay of ovulation; however, alterations to the endometrium that may affect implantation may also contribute to efficacy. The most common side effects are: headache, nausea, stomach (abdominal) pain, menstrual pain. Some women taking ella may have their next period earlier or later than expected. If your period is more than a week late, you should get a pregnancy test.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2018)
Source:
ANDA205913
(2018)
Source URL:
First approved in 2009
Source:
NDA022307
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Conditions:
Prasugrel, a thienopyridine derivative, is a platelet activation and aggregation inhibitor structurally and pharmacologically related to clopidogrel and ticlopidine. Similar to clopidogrel, prasugrel is a prodrug that requires enzymatic transformation in the liver to its active metabolite, R-138727. R-138727 irreversibly binds to P2Y12 type ADP receptors on platelets thus preventing activation of the GPIIb/IIIa receptor complex. As a result, inhibition of ADP-mediated platelet activation and aggregation occurs. Prasugrel was developed by Daiichi Sankyo Co. and is currently marketed under the brand name EFFIENT in the United States and Canada in cooperation with Eli Lilly and Company for acute coronary syndromes planned for percutaneous coronary intervention (PCI). FDA approved in 2009.
Status:
US Approved Rx
(2009)
Source:
NDA022268
(2009)
Source URL:
First approved in 2009
Source:
NDA022268
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Targets:
Artemether is an antimalarial agent used to treat acute uncomplicated malaria. It is administered in combination with lumefantrine for improved efficacy against malaria. Artemether is rapidly metabolized into an active metabolite dihydroartemisinin (DHA). The antimalarial activity of artemether and DHA has been attributed to endoperoxide moiety. Artemethe involves an interaction with ferriprotoporphyrin IX (“heme”), or ferrous ions, in the acidic parasite food vacuole, which results in the generation of cytotoxic radical species. The generally accepted mechanism of action of peroxide antimalarials involves interaction of the peroxide-containing drug with heme, a hemoglobin degradation byproduct, derived from proteolysis of hemoglobin. This interaction is believed to result in the formation of a range of potentially toxic oxygen and carbon-centered radicals. Other mechanisms of action for artemether include their ability to reduce fever by production of signals to hypothalamus thermoregulatory center. Now, recent research has shown the presence of a new, previously unknown cyclooxygenase enzyme COX-3, found in the brain and spinal cord, which is selectively inhibited by artemether, and is distinct from the two already known cyclooxygenase enzymes COX-1 and COX-2. It is now believed that this selective inhibition of the enzyme COX-3 in the brain and spinal cord explains the ability of artemether in relieving pain and reducing fever which is produced by malaria. The most common adverse reactions in adults (>30%) are headache, anorexia, dizziness, asthenia, arthralgia and myalgia.
Status:
US Approved Rx
(2008)
Source:
NDA022201
(2008)
Source URL:
First approved in 2008
Source:
NDA022201
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
DEGARELIX (FIRMAGON®) is a synthetic linear decapeptide amide containing seven unnatural amino acids, five of which are D-amino acids. It is a GnRH receptor antagonist. It binds reversibly to the pituitary GnRH receptors, thereby reducing the release of gonadotropins and consequently testosterone. DEGARELIX (FIRMAGON®) is effective in achieving and maintaining testosterone suppression below the castration level of 50 ng/dL and is indicated for the treatment of patients with advanced prostate cancer.
Status:
US Approved Rx
(2008)
Source:
NDA022201
(2008)
Source URL:
First approved in 2008
Source:
NDA022201
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
DEGARELIX (FIRMAGON®) is a synthetic linear decapeptide amide containing seven unnatural amino acids, five of which are D-amino acids. It is a GnRH receptor antagonist. It binds reversibly to the pituitary GnRH receptors, thereby reducing the release of gonadotropins and consequently testosterone. DEGARELIX (FIRMAGON®) is effective in achieving and maintaining testosterone suppression below the castration level of 50 ng/dL and is indicated for the treatment of patients with advanced prostate cancer.
Status:
US Approved Rx
(2005)
Source:
NDA021862
(2005)
Source URL:
First approved in 2005
Source:
NDA021862
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Amfenac (AHR 5850) is a non-steroidal anti-inflammatory compound possessing antipyretic and analgesic properties. It is an inhibitor of cyclooxygenases. Amfenac sodium has been on the Japanese market since 1986 (as FENAZOX®, Meiji) in an oral dosage form (50 mg, four-times-daily) indicated for the treatment of pain and inflammation associated with rheumatoid and osteoarthritis and low back pain, as well as the treatment of pain and inflammation following surgery, injury or tooth extraction. Amfenac is an active moiety of nepafenac (amfenac amide), the prodrug has very weak cyclooxygenase inhibitory activity whereas amfenac exhibits more potent cyclooxygenase activity. Nepafenac at a concentration of 0.1% (NEVANAC) was approved for marketing in the US in 2005. Nepafenac is also approved for marketing in the European Union(EU) and Japan as well as over 60 other countries for the treatment of postoperative pain and inflammation associated with cataract surgery.