{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Restrict the search for
l-glutamine
to a specific field?
Status:
US Approved Rx
(1971)
Source:
NDA017001
(1971)
Source URL:
First approved in 1971
Source:
NDA017001
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Flucytosine (5-flucytosine, Ancobon) is an antifungal agent used for treatment of serious fungal infections caused by Candida or Cryptococcus. A fluorinated cytosine analog it was originally developed as an anti-tumor agent, but was found to be non-effective against tumors. Monotherapy with 5-FC is limited because of the frequent development of pathogens resistance. It is often used in in combination with amphotericin B. The severe side effects of 5-flucytosine include hepatotoxicity and bone-marrow depression. 5-fluorocytosine is a prodrug to the cytotoxic compound 5-fluorouracil. Although the exact mode of action is unknown, it has been proposed that flucytosine acts directly on fungal organisms by competitive inhibition of purine and pyrimidine uptake and indirectly by intracellular metabolism to 5-fluorouracil. Flucytosine is taken up by fungal organisms via the enzyme cytosine permease. Inside the fungal cell, flucytosine is rapidly converted to fluorouracil by the enzyme cytosine deaminase. Fluorouracil exerts its antifungal activity through the subsequent conversion into several active metabolites, which inhibit protein synthesis by being falsely incorporated into fungal RNA or interfere with the biosynthesis of fungal DNA through the inhibition of the enzyme thymidylate synthetase.
Status:
US Approved Rx
(2004)
Source:
ANDA076831
(2004)
Source URL:
First approved in 1970
Source:
URISPAS by ORTHO MCNEIL JANSSEN
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Flavoxate is a drug, indicated for symptomatic relief of dysuria, urgency, nocturia, suprapubic pain, frequency and incontinence as may occur in cystitis, prostatitis, urethritis, urethrocystitis/urethrotrigonitis. Flavoxate is not indicated for definitive treatment, but is compatible with drugs used for the treatment of urinary tract infections. It was approved for use in the United States in 1970 and continues to be used. Drug acts as a direct antagonist at muscarinic acetylcholine receptors in cholinergically innervated organs. Its anticholinergic-parasympatholytic action reduces the tonus of smooth muscle in the bladder, effectively reducing the number of required voids, facilitating increased volume per void. Common side effects are those of parasympathetic stimulation and include dryness of the mouth and eyes, decreased sweating, headache, visual blurring, constipation, urinary retention, impotence, tachycardia and palpitations, anxiety, restlessness and in some instances agitation and delusions.
Status:
US Approved Rx
(2019)
Source:
ANDA210341
(2019)
Source URL:
First approved in 1970
Source:
DOPAR by SHIRE
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Levodopa (L-DOPA) was first isolated from seedlings of Vicia faba by Marcus Guggenheim in 1913. Levodopa, a dopamine precursor, is an effective and well-tolerated dopamine replacement agent used to treat Parkinson's disease. Oral levodopa has been widely used for over 40 years, often in combination with a dopa-decarboxylase inhibitor carbidopa, which reduces many treatment complications, extending its half-life and increasing levodopa availability to the brain. Entacapone, a catechol-O-methyltransferase inhibitor, can also be used to improve the bioavailability of levodopa, especially when used in conjunction with a carbidopa.
Status:
US Approved Rx
(2001)
Source:
ANDA076092
(2001)
Source URL:
First approved in 1970
Source:
NDA016812
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Ketamine (brand name Ketalar) is a cyclohexanone derivative used for induction of anesthesia. Ketalar is indicated as the sole anesthetic agent for diagnostic and surgical procedures that do not require skeletal muscle relaxation; also, it is indicated for the induction of anesthesia prior to the administration of other general anesthetic agents. Ketamine blocks NMDA receptors through an interaction with sites thought to be located within the ion channel pore region. However, the complete pharmacology of ketamine is more complex, and it is known to directly interact with a variety of other sites to varying degrees. Recently, it was shown that inclusion of the NR3B subunit does not alter the ketamine sensitivity of recombinant NR1/NR2 receptors expressed in oocytes. Likewise, 100 μM ketamine produced only weak inhibition of the glycine-induced current of NR1/NR3A/NR3B receptors. The side effects of ketamine noted in clinical studies include psychedelic symptoms (hallucinations, memory defects, panic attacks), nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. The recreational use of ketamine is increasing and comes with a variety of additional risks ranging from bladder and renal complications to persistent psychotypical behaviour and memory defects. Ketamine was first synthesized in 1962 by Calvin Stevens at Parke-Davis Co (now Pfizer) as an alternative anesthetic to phencyclidine. It was first used in humans in 1965 by Corssen and Domino and was introduced into clinical practice by 1970.
Status:
US Approved Rx
(2017)
Source:
ANDA206218
(2017)
Source URL:
First approved in 1970
Source:
NDA050162
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Clindamycin hydrochloride is the hydrated hydrochloride salt of clindamycin. Clindamycin is a semisynthetic antibiotic produced by a 7(S)-chloro-substitution of the 7(R)-hydroxyl group of the parent compound lincomycin. Clindamycin inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome. It has activity against Gram-positive aerobes and anaerobes as well as some Gram-negative anaerobes.
Status:
US Approved Rx
(1970)
Source:
NDA016885
(1970)
Source URL:
First approved in 1970
Source:
NDA016885
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Conditions:
Mitotane is an oral chemotherapeutic agent indicated in the treatment of inoperable adrenal cortical carcinoma of both functional and nonfunctional types. Mitotane can best be described as an adrenal cytotoxic agent, although it can cause adrenal inhibition, apparently without cellular destruction. The administration of Mitotane alters the extra-adrenal metabolism of cortisol in man; leading to a reduction in measurable 17-hydroxy corticosteroids, even though plasma levels of corticosteroids do not fall. The drug apparently causes increased formation of 6-B-hydroxyl cortisol. Its biochemical mechanism of action is unknown, although data are available to suggest that the drug modifies the peripheral metabolism of steroids as well as directly suppressing the adrenal cortex. Mitotane is used for treatment of inoperable adrenocortical tumours; Cushing's syndrome
Status:
US Approved Rx
(2019)
Source:
NDA211243
(2019)
Source URL:
First approved in 1970
Source:
NDA211243
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Esketamine is an S(+)-enantiomer of ketamine. It is a nonselective, noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor. A nasal spray, containing esketamine, was approved in 2019 for the treatment of treatment-resistant depression in adults, in conjunction with an oral antidepressant, and is marketed under tradename SPARAVATO. Esketamine is a schedule III drug product in the USA.
Status:
US Approved Rx
(1988)
Source:
ANDA072123
(1988)
Source URL:
First approved in 1968
Source:
INNOVAR by EPIC PHARMA LLC
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Droperidol produces marked tranquilization and sedation. It allays apprehension and provides a state of mental detachment and indifference while maintaining a state of reflex alertness. Droperidol produces an antiemetic effect as evidenced by the antagonism of apomorphine in dogs. It lowers the incidence of nausea and vomiting during surgical procedures and provides antiemetic protection in the postoperative period. Droperidol potentiates other CNS depressants. It produces mild alpha-adrenergic blockade, peripheral vascular dilatation and reduction of the pressor effect of epinephrine. It can produce hypotension and decreased peripheral vascular resistance and may decrease pulmonary arterial pressure (particularly if it is abnormally high). It may reduce the incidence of epinephrine-induced arrhythmias, but it does not prevent other cardiac arrhythmias. The exact mechanism of action is unknown, however, droperidol causes a CNS depression at subcortical levels of the brain, midbrain, and brainstem reticular formation. It may antagonize the actions of glutamic acid within the extrapyramidal system. It may also inhibit cathecolamine receptors and the reuptake of neurotransmiters and has strong central antidopaminergic action and weak central anticholinergic action. It can also produce ganglionic blockade and reduced affective response. The main actions seem to stem from its potent Dopamine (2) receptor antagonism with minor antagonistic effects on alpha-1 adrenergic receptors as well. Droperidol is used to produce tranquilization and to reduce the incidence of nausea and vomiting in surgical and diagnostic procedures.
Status:
US Approved Rx
(1999)
Source:
ANDA075568
(1999)
Source URL:
First approved in 1968
Source:
NDA016324
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Conditions:
Azathioprine remains one of the most important and widely prescribed drugs for immunosuppression/immunomodulation in autoimmune disease over 30 years after its introduction. Azathioprine is licensed for the treatment of only a limited range of autoimmune disorders, which is probably a reflection on the age of the drug. Widening the license for a drug is both costly and time consuming, and it would make no commercial sense for manufacturers to do so, at this late stage of life, for azathioprine. However, azathioprine is now so well established as an immunomodulating drug in autoimmune disorders that it represents the gold standard by which other drugs are compared. Azathioprine is indicated as an adjunct for the prevention of rejection in renal homotransplantation. It is also indicated for the management of active rheumatoid arthritis to reduce signs and symptoms. The combined use of azathioprine tablets with disease modifying anti-rheumatic drugs (DMARDs) has not been studied for either added benefit or unexpected adverse effects. The use of azathioprine tablets with these agents cannot be recommended. Azathioprine is a pro-drug, converted in the body to the active metabolite 6-mercaptopurine. Azathioprine acts to inhibit purine synthesis necessary for the proliferation of cells, especially leukocytes and lymphocytes. It is a safe and effective drug used alone in certain autoimmune diseases, or in combination with other immunosuppressants in organ transplantation. Its most severe side effect is bone marrow suppression, and it should not be given in conjunction with purine analogues such as allopurinol. The enzyme thiopurine S-methyltransferase (TPMT) deactivates 6-mercaptopurine. Genetic polymorphisms of TPMT can lead to excessive drug toxicity, thus assay of serum TPMT may be useful to prevent this complication. Azathioprine is metabolized to 6-mercaptopurine (6-MP). Both compounds are rapidly eliminated from blood and are oxidized or methylated in erythrocytes and liver; no azathioprine or mercaptopurine is detectable in urine after 8 hours. Activation of 6-mercaptopurine occurs via hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and a series of multi-enzymatic processes involving kinases to form 6-thioguanine nucleotides (6-TGNs) as major metabolites.
Status:
US Approved Rx
(2015)
Source:
ANDA203872
(2015)
Source URL:
First approved in 1968
Source:
OVRAL-28 by WYETH PHARMS
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Levonorgestrel (LNG) is a synthetic progestational hormone with actions similar to those of progesterone and about twice as potent as its racemic or (+-)-isomer (norgestrel). It is used for contraception, control of menstrual disorders, and treatment of endometriosis. It is usually supplied in a racemic mixture (Norgestrel, 6533-00-2). Only the levonorgestrel isomer is active. Within an Intrauterine device (IUD), sold as Mirena among others, it is effective for long term prevention of pregnancy. The local mechanism by which continuously released LNG enhances contraceptive effectiveness of Mirena has not been conclusively demonstrated. Studies of Mirena and similar LNG IUS prototypes have suggested several mechanisms that prevent pregnancy: thickening of cervical mucus preventing passage of sperm into the uterus, inhibition of sperm capacitation or survival, and alteration of the endometrium. Mirena has mainly local progestogenic effects in the uterine cavity. The high local levels of levonorgestrel lead to morphological changes including stromal pseudodecidualization, glandular atrophy, a leukocytic infiltration and a decrease in glandular and stromal mitoses. Ovulation is inhibited in some women using Mirena. In a 1-year study, approximately 45% of menstrual cycles were ovulatory, and in another study after 4 years, 75% of cycles were ovulatory. There has been much debate regarding levonorgestrel emergency contraception's (LNG-EC's) method of action since 1999 when the Food and Drug Administration first approved its use. Proponents of LNG-EC have argued that they have moral certitude that LNG-EC works via a non-abortifacient mechanism of action, and claim that all the major scientific and medical data consistently support this hypothesis. However, newer medical data serve to undermine the consistency of the non-abortifacient hypothesis and instead support the hypothesis that preovulatory administration of LNG-EC has significant potential to work via abortion. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room protocols. In the future, technology such as the use of early pregnancy factor may have the potential to quantify how frequently preovulatory LNG-EC works via abortion. The latest scientific and medical evidence now demonstrates that levonorgestrel emergency contraception theoretically works via abortion quite often. The implications of the newer data have important ramifications for medical personnel, patients, and both Catholic and non-Catholic emergency room rape protocols.