U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 2531 - 2540 of 2578 results

Tesamorelin is an analog of human growth hormone-releasing factor (GRF). The peptide precursor of tesamorelin acetate is produced synthetically and is comprised of the 44 amino acid sequence of human GRF. In vitro, tesamorelin binds and stimulates human GRF receptors with similar potency as the endogenous GRF. GRF, also known as growth hormone-releasing hormone (GHRH), is a hypothalamic peptide that acts on the pituitary somatotroph cells to stimulate the synthesis and pulsatile release of endogenous growth hormone (GH), which is both anabolic and lipolytic. GH exerts its effects by interacting with specific receptors on a variety of target cells, including chondrocytes, osteoblasts, myocytes, hepatocytes, and adipocytes, resulting in a host of pharmacodynamic effects. Some, but not all these effects, are primarily mediated by IGF-1 produced in the liver and in peripheral tissues. Tesamorelin is the first and, so far, only treatment indicated for the reduction of excess abdominal fat in patients with HIV-associated lipodystrophy. Tesamorelin is effective in improving visceral adiposity and body image in patients with HIV-associated lipodystrophy over 26-52 weeks of treatment. Potential limitations for its use include high cost and lack of long-term safety and adherence data. Tesamorelin provides a useful treatment option for management of patients with significant lipodystrophy related to HIV infection.
Lanreotide is a medication used in the management of acromegaly and symptoms caused by neuroendocrine tumors, most notably carcinoid syndrome. It is a long-acting analog of somatostatin. It is available in several countries, including the United Kingdom, Australia and Canada, and was approved for sale in the United States by the Food and Drug Administration on August 30, 2007. Lanreotide was developed in the lab of Dr. David H. Coy, School of Medicine. Dr. Coy serves as Director of the Peptide Laboratory. Lanreotide (as lanreotide acetate) is manufactured by Ipsen, and marketed under the trade name Somatuline. The mechanism of action of lanreotide is believed to be similar to that of natural somatostatin. Lanreotide has a high affinity for human somatostatin receptors (SSTR) 2 and 5 and a reduced binding affinity for human SSTR1, 3, and 4. Activity at human SSTR 2 and 5 is the primary mechanism believed responsible for GH inhibition. Like somatostatin, lanreotide is an inhibitor of various endocrine, neuroendocrine, exocrine and paracrine functions. Lanreotide inhibits the basal secretion of motilin, gastric inhibitory peptide and pancreatic polypeptide, but has no significant effect on the secretion of secretin. Lanreotide inhibits postprandial secretion of pancreatic polypeptide, gastrin and cholecystokinin (CCK). In healthy subjects, lanreotide produces a reduction and a delay in post-prandial insulin secretion, resulting in transient, mild glucose intolerance.
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.
Pramlintide is an analog of human amylin. Amylin is co-secreted with insulin from pancreatic beta cells and acts centrally to slow gastric emptying, suppress postprandial glucagon secretion, and decrease food intake. These actions complement those of insulin to regulate blood glucose concentrations. Amylin is relatively deficient in patients with type 2 diabetes, depending on the severity of beta-cell secretory failure, and is essentially absent in patients with type 1 diabetes. Through mechanisms similar to those of amylin, pramlintide improves overall glycemic control, reduces postprandial glucose levels, and reduces bodyweight in patients with diabetes using mealtime insulin. SYMLIN® (pramlintide acetate) is indicated for patients with type 1 or type 2 diabetes who use mealtime insulin and have failed to achieve desired glycemic control despite optimal insulin therapy.
Human secretin is a gastrointestinal peptide hormone that regulates secretions in the stomach, pancreas, and liver. Synthetic human secretin displays equivalent biological activity and properties as naturally occurring secretin. Acetate salt of synthetic secretin was marketed under the name ChiRhoStim. ChiRhoStim is indicated for the stimulation of pancreatic secretions, including bicarbonate, to aid in the diagnosis of pancreatic exocrine dysfunction, for the gastrin secretion to aid in the diagnosis of gastrinoma. ChiRhoStim is also used for the pancreatic secretions to facilitate the identification of the ampulla of Vater and accessory papilla during endoscopic, retrograde cholangiopancreatography (ERCP). When secretin binds to secretin receptors on pancreatic duct cells it opens cystic fibrosis transmembrane conductance regulator (CFTR) channels, leading to secretion of bicarbonate-rich-pancreatic fluid.
Ziconotide (PRIALT; SNX-111) is a neuroactive peptide, which was approved by FDA in 2004 for the management of severe chronic pain in adult patients for whom intrathecal therapy is warranted, and who are intolerant of or refractory to other treatment, such as systemic analgesics, adjunctive therapies, or intrathecal morphine. Ziconotide acts as a selective N-type voltage-gated calcium channel blocker, which leads to a blockade of excitatory neurotransmitter release from the primary afferent nerve terminals.
Triptorelin is a synthetic decapeptide agonist analog of luteinizing hormone releasing hormone (LHRH). It works by decreasing the production of certain hormones, which reduces testosterone levels in the body. Animal studies comparing triptorelin to native GnRH found that triptorelin had 13 fold higher releasing activity for luteinizing hormone, and 21-fold higher releasing activity for follicle-stimulating hormone. Triptorelin is indicated for the palliative treatment of advanced prostate cancer.
Teriparatide was manufactured under the brand name FORTEO. FORTEO contains recombinant human parathyroid hormone (1-34), [rhPTH(1-34)], which has an identical sequence to the 34 N-terminal amino acids (the biologically active region) of the 84-amino acid human parathyroid hormone, that regulates calcium and phosphate in the body. FORTEO is indicated for the treatment of postmenopausal women with severe osteoporosis who are at high risk of fracture or who have failed or are intolerant to previous osteoporosis therapy. In addition, Forteo is used for the treatment of osteoporosis associated with sustained systemic glucocorticoid therapy in men and women who are at increased risk for fracture. The biological actions of teriparatide is mediated through binding to specific high-affinity cell-surface receptors. Teriparatide is not expected to accumulate in bone or other tissues.
Calcitonin-salmon is a polypeptide hormone secreted by the parafollicular cells of the ultimobranchial gland of salmon fish. Calcitonin-salmon Nasal Spray is a polypeptide of 32 amino acids manufactured by recombinant DNA technology and is identical to calcitonin produced by salmon fish or chemical synthesis. Calcitonin acts primarily on bone, but direct renal effects and actions on the gastrointestinal tract are also recognized. Calcitonin-salmon appears to have actions essentially identical to calcitonins of mammalian origin, but its potency per mg is greater and it has a longer duration of action. The actions of calcitonin on bone and its role in normal human bone physiology are still not completely elucidated, although calcitonin receptors have been discovered in osteoclasts and osteoblasts. Single injections of calcitonin cause a marked transient inhibition of the ongoing bone resorptive process. With prolonged use, there is a persistent, smaller decrease in the rate of bone resorption. Histologically, this is associated with a decreased number of osteoclasts and an apparent decrease in their resorptive activity. In vitro studies have shown that calcitonin-salmon causes inhibition of osteoclast function with loss of the ruffled osteoclast border responsible for resorption of bone. Calcitonin-salmon Nasal Spray is indicated for the treatment of postmenopausal osteoporosis in females greater than 5 years postmenopause with low bone mass relative to healthy premenopausal females.
Cosyntropin (ACTH (1–24)) is a synthetic peptide that is identical to the 24-amino acid segment at the N-terminal of adrenocorticotropic hormone. It is intended for use as a diagnostic agent in the screening of patients presumed to have adrenocortical insufficiency. Cosyntropin may bind to sites located on the adrenergic nerve endings associated with the cardiac tissue, and such binding would interfere with the neuronal reuptake of the catecholamines

Showing 2531 - 2540 of 2578 results