U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 241 - 250 of 4351 results

Status:
Investigational
Source:
INN:girisopam [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Girisopam (GYKI 51189), a 2,3-benzodiazepine, is a compound with anxiolytic and antipsychotic action. It has shown these effects in several animal models. Girisopam differs from the traditional 1,4-benzodiazepines because of its selective anxiolytic action without muscle relaxant and anticonvulsive activity, and because it does not have affinity for 1,4-benzodiazepine receptors. Antidepressant activity of girisopam was also reported. The binding site of girisopam in neuronal cells in the central nervous system is located exclusively to the basal ganglia. Because the danger of tolerance and dependence is lower for 2,3-benzodiazepine than 1,4-benzodiazepines, girisopam may potentially be used in treatment of addiction and affective disorders. No clinical trials were conducted in the US.
Status:
Investigational
Source:
INN:melizame [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Melizame is a sugar substitute for sweetening caloric or noncaloric materials.
Status:
Investigational
Source:
INN:ladostigil [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

LADOSTIGIL, a rasagiline derivative, is a reversible acetylcholinesterase and butyrylcholinesterase inhibitor with neuroprotective properties. It also acts as an irreversible brain monoamine oxidases inhibitor. It is under development for the treatment of neurodegenerative disorders like dementia and Alzheimer's disease.
Status:
Investigational
Source:
INN:evobrutinib [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Evobrutinib is a highly selective, irreversible inhibitor of Bruton's tyrosine kinase (BTK). It potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of B cells and innate immune cells such as monocytes and basophils. Evobrutinib demonstrated effectivity in autoimmune disease preclinical models. Evobrutinib is being developed by Merck Serono for the treatment of various autoimmune disorders.
Status:
Investigational
Source:
INN:nolatrexed
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



The dihydrochloride salt of nolatrexed, a water-soluble lipophilic quinazoline folate analog with antineoplastic activity. Nolatrexed occupies the folate binding site of thymidylate synthase, resulting in inhibition of thymidylate synthase activity and thymine nucleotide synthesis with subsequent inhibition of DNA replication, DNA damage, S-phase cell cycle arrest, and caspase-dependent apoptosis. This agent also exhibits radiosensitizing activity. Orphan designation of nolatrexed was granted in the Unites States of America for treatment of hepatocellular carcinoma.
Tozasertib, originally developed as VX-680 by Vertex (Cambridge, MA) and later renamed MK-0457 by Merck (Whitehouse Station, NY), was the first aurora kinase inhibitor to be tested in clinical trials. The drug, a pyrimidine derivative, has affinity for all aurora family members at nanomolar concentrations with inhibitory constant values (Ki(app)) of 0.6, 18, and 4.6 nM for aurora A, aurora B, and aurora C, respectively. Preclinical studies confirmed that tozasertib inhibited both aurora A and aurora B kinase activity, and activity has been reported against prostate, thyroid, ovarian, and oral squamous cancer cell lines. Upon treatment with tozasertib, cells accumulate with a 4N DNA content due to a failure of cytokinesis. This ultimately leads to apoptosis, preferentially in cells with a compromised p53 function. Tozasertib is an anticancer chemotherapeutic pan-aurora kinase (AurK) inhibitor that also inhibits FMS-like tyrosine kinase 3 (FLT3) and Abl. Tozasertib is currently in clinical trials as a potential treatment for acute lymphoblastic leukemia (ALL). In cellular models of cancer, tozasertib activates caspase-3 and PARP and decreases expression of HDAC, increasing apoptosis and inhibiting cell growth. In other cellular models, tozasertib inhibits cell proliferation and metastasis by blocking downstream ERK signaling and downregulating cdc25c and cyclin B. This compound also decreases tumor growth in an in vivo model of prostate cancer.
Status:
Investigational
Source:
JAN:EMITEFUR [JAN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Emitefur or BOF-A2 is a fluorinated pyrimidine antimetabolite exerting antineoplastic properties. It is a compound composed of 5-fluorouracil (5-FU) and 3-cyano-2,6-dihydroxypyridine (CNDP), an inhibitor of 5-FU degradation by dihydrouracil dehydrogenase in order to prolong the blood 5-FU level as well as increase selective toxicity to a tumor. Emitefur demonstrated clinical activity in preliminary studies in Japan. Emitefur development for the treatment of solid tumors has been discontinued.
Status:
Investigational
Source:
INN:succinobucol [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Succinobucol (also known as AGI-1067) is a probucol derivative patented by American pharmaceutical company Atherogenics, Inc as vascular protectant with antioxidant, anti-inflammatory and antiplatelet activities. In vitro, succinobucol inhibits the TNF-α induced expression of VCAM-1 and MCP-1 with little effect on intercellular adhesion molecule (ICAM)-1. In addition, succinobucol inhibits lipopolysaccharide (LPS)-induced expression of tissue factor in human monocytic cells and endothelial cells, an effect thought to be mediated independently from the nuclear factor κB pathway. Preclinical studies have shown reduced total cholesterol and low-density lipoprotein cholesterol concentrations, increased high-density lipoprotein cholesterol concentrations, decreased levels of inflammatory mediators, and reduced atheroma area with Succinobucol treatment in animal models. Unfortunately, in clinical trials, Succinobucol failed to demonstrate a strong cardioprotective effect. Undesired metabolic effects including high-density lipoprotein cholesterol-lowering have been consistently reported, and diarrhea appears to be an expected adverse effect.
Status:
Investigational
Source:
INN:camobucol [INN]
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Camobucol is a novel, orally active, phenolic antioxidant and anti-inflammatory compound with antirheumatic properties. Camobucol exhibited potent antioxidant activity toward lipid peroxides in vitro and displayed enhanced cellular uptake relative to a structurally related drug, probucol. This resulted in potent inhibition of cellular levels of reactive oxygen species in multiple cell types. Camobucol selectively inhibited tumor necrosis factor (TNF)-alpha-inducible levels of the redox-sensitive genes, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, with less inhibition of E-selectin, and no effect on intracellular adhesion molecule-1 expression in endothelial cells. In addition, Camobucol inhibited cytokine-induced levels of monocyte chemoattractant protein-1, interleukin (IL)-6, and IL-8 from endothelial cells and human fibroblast-like synoviocytes as well as lipopolysaccharide-induced release of TNF-alpha, IL-1beta, and IL-6 from human peripheral blood mononuclear cells. Camobucol did not inhibit TNF-alpha-induced nuclear translocation of nuclear factor of the kappa-enhancer in B cells (NF-kappaB), suggesting that the mechanism of action is independent of this redox-sensitive transcription factor.
Status:
Investigational
Source:
INN:naronapride [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Naronapride (ATI-7505), an orally administered, cisapride analogue and serotonin4 (5HT4) receptor agonist, is being developed by Renexxion for the treatment of multiple gastrointestinal disorders. Sinovant is initially developing naronapride for the treatment of irritable bowel syndrome – constipation (IBS-C), a disease that affects millions of Chinese patients and for which few effective treatment options are available. Naronapride has been evaluated in over 900 subjects in multiple randomized controlled clinical studies and has demonstrated promising results in patients with gastroesophageal reflux disease (GERD), erosive esophagitis (EE), and chronic idiopathic constipation (CIC). Naronapride’s low systemic absorption and high specificity for 5HT4 and D2 receptors is thought to improve its safety and tolerability profile relative to other members of the class.