U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 221 - 230 of 4227 results

Cidoxepin is the cis-isomer of the widely prescribed tricyclic compound doxepin. Commercial preparations of the tricyclic anti-depressant doxepin contain 15% of the more active cis-doxepin and 85% of the trans-isomer. Elorac, Inc., a rapidly growing specialty pharmaceutical company focused on the treatment of dermatological disorders, is pleased to announce that it has acquired worldwide rights to the active agent Cidoxepin from Gideon Pharmaceuticals. Cidoxepin appears to be much more potent than doxepin while having less sedative and cholinergic side effects. Elorac plans to develop oral formulations of the drug to treat urticaria and topical formulations for treatment of atopic and contact dermatitis.
Status:
Investigational
Source:
NCT02303262: Phase 2 Interventional Completed Metastatic Leiomyosarcoma
(2015)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Mocetinostat is an rationally designed, orally available, Class 1-selective, small molecule, 2-aminobenzamide HDAC inhibitor with potential antineoplastic activity. Mocetinostat binds to and inhibits Class 1 isoforms of HDAC, specifically HDAC 1, 2 and 3, which may result in epigenetic changes in tumor cells and so tumor cell death; although the exact mechanism has yet to be defined, tumor cell death may occur through the induction of apoptosis, differentiation, cell cycle arrest, inhibition of DNA repair, upregulation of tumor suppressors, down regulation of growth factors, oxidative stress, and autophagy, among others. It is undergoing clinical trials for treatment of various cancers including bladder cancer, diffuse large B cell lymphoma, follicular lymphoma, myelodysplastic syndromes, non-small cell lung cancer. Fatigue, weight loss or anorexia were most common treatment-related adverse events.
Status:
Investigational
Source:
NCT00726648: Phase 1/Phase 2 Interventional Completed Relapsing Multiple Sclerosis
(2008)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Zaurategrast (CDP323) is an ethyl ester prodrug of CT7758, a potent carboxylic acid antagonist of integrin alpha4-beta1 (α4β1) or very late antigen 4 (VLA4). CDP323 was under development with UCB and Biogen Idec for the treatment of multiple sclerosis. Its development was discontinued in 2009 based on inadequate interim efficacy data in a phase II clinical trial.
Status:
Investigational
Source:
NCT00163085: Phase 2 Interventional Completed Parkinson's Disease
(2005)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Traxoprodil (CP-101,606) is a potent, selective N-Methyl-D-aspartate (NMDA) receptor (NR2B subunit) antagonist under development by Pfizer for its potential as a neuroprotectant in head injury and neurodegenerative disease. It is in phase II trials in the US and in phase I in Japan for the potential treatment of head injury, such as, Depressive Disorder, Major and Parkinson's Disease. CP-101,606 does not protect against glutamate-induced neurotoxicity in cultured cerebellar neurons, up to a dose of 10 uM. These results are consistent with CP-101,606 being a potent NMDA antagonist, selective for the type of NMDA receptor associated with the hippocampus. Some further investigation revealed that CP-101,606 was associated with a dose-related dissociation and amnesia. These results support the hypothesis that glutamate antagonists may be useful antidyskinetic agents. However, future studies will have to determine if the benefits of dyskinesia suppression can be achieved without adverse cognitive effects.
Tozasertib, originally developed as VX-680 by Vertex (Cambridge, MA) and later renamed MK-0457 by Merck (Whitehouse Station, NY), was the first aurora kinase inhibitor to be tested in clinical trials. The drug, a pyrimidine derivative, has affinity for all aurora family members at nanomolar concentrations with inhibitory constant values (Ki(app)) of 0.6, 18, and 4.6 nM for aurora A, aurora B, and aurora C, respectively. Preclinical studies confirmed that tozasertib inhibited both aurora A and aurora B kinase activity, and activity has been reported against prostate, thyroid, ovarian, and oral squamous cancer cell lines. Upon treatment with tozasertib, cells accumulate with a 4N DNA content due to a failure of cytokinesis. This ultimately leads to apoptosis, preferentially in cells with a compromised p53 function. Tozasertib is an anticancer chemotherapeutic pan-aurora kinase (AurK) inhibitor that also inhibits FMS-like tyrosine kinase 3 (FLT3) and Abl. Tozasertib is currently in clinical trials as a potential treatment for acute lymphoblastic leukemia (ALL). In cellular models of cancer, tozasertib activates caspase-3 and PARP and decreases expression of HDAC, increasing apoptosis and inhibiting cell growth. In other cellular models, tozasertib inhibits cell proliferation and metastasis by blocking downstream ERK signaling and downregulating cdc25c and cyclin B. This compound also decreases tumor growth in an in vivo model of prostate cancer.
Status:
Investigational
Source:
NCT03184584: Phase 2/Phase 3 Interventional Terminated Alström Syndrome
(2017)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

PBI 4050, a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, that was developed for managing inflammatory and fibrosis-related diseases. In addition, PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells. This drug participated in clinical trials for the treatment of acute lung injury, cystic fibrosis, diabetic nephropathies; idiopathic pulmonary fibrosis; metabolic syndrome; scleroderma; type 2 diabetes mellitus. Besides, this drug has granted a Rare Pediatric Disease Designation for the treatment of Alström syndrome (AS). PBI-4050 was also previously granted Orphan Drug Designation by the FDA and the EMA for the treatments of AS and idiopathic pulmonary fibrosis (IPF) as well as PIM (Promising Innovative Medicine) designation by the Medicines and Healthcare products Regulatory Agency (MHRA) for the treatment of IPF and AS. The FDA grants Rare Pediatric Disease Designations for serious or life-threatening diseases wherein the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years, including age groups, often called neonates, infants, children, and adolescents. Now Prometic Life Sciences plans to file investigational new drug application for pivotal phase III trial for Alstrom's syndrome in the second half of 2019.
Status:
Investigational
Source:
NCT01420510: Phase 2/Phase 3 Interventional Unknown status Vaginitis
(2011)
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Adelmidrol is the synthetic derivate of azelaic acid, a naturally occurring saturated dicarboxylic acid, that is found in some whole grains and in trace amounts in the human body. Chemically, ademidrol is the N,N-bis (2-hydroxyethyl) non anediamide and it is an amphiphilic or amphipathic compound, possessing both hydrophilic and hydrophobic properties, that favor its solubility both in aqueous and organic media. Adelmidrol belongs to the aliamide family, a group of fatty acid derivatives with cannabimimetic properties, able to control mast cell (MC) hyperreactivity in several pathophysiological and pathological conditions. Pro-inflammatory NF-κB pathway were markedly reduced by treatment with adelmidrol. The anti-inflammatory effect of adelmidrol appeared to be related on PPAR-gamma activation. Adelmidrol is topically effective for human inflammatory skin disorders and is able to modulate the inflammatory response in human keratinocytes. The combination of hyaluronic acid and adelmidrol improves the signs of osteoarthritis induced by monosodium iodoacetate.
Seliciclib (CYC202, R-roscovitine) is a second-generation orally available cyclin-dependent kinases (CDKs) inhibitor that competes for ATP binding sites on these kinases. It is a direct inhibitor of cyclin CDK2/E, CDK2/A and it has inhibitory effects on cyclin H/CDK7, CDK5, and CDK9. CDKs are enzymes that are central to the process of cell division and cell cycle control and play pivotal roles in cancer cell growth and DNA damage repair. Seliciclib exerts an anti-proliferative effect via several key mechanisms: selective downregulation of proliferative and survival proteins and upregulation of p53, leading to growth arrest or apoptosis. The second one is decreasing phosphorylation of Rb and modulating E2F transcriptional activity leading to growth arrest or apoptosis. Seliciclib is currently in phase II clinical trial as a drug candidate for the treatment of Cushing's disease and as a potential therapeutic agent for the treatment of cystic fibrosis (CF). In addition, it is in Phase II trials for non-small cell lung cancer and nasopharyngeal carcinoma.
Status:
Investigational
Source:
NCT01047059: Phase 2 Interventional Completed Non-Small-Cell Lung Carcinoma
(2010)
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Alovudine (3’ -deoxy-3’ fluorothymidine) is a nucleoside reverse transcriptase inhibitor (NRTI) initially tested in the early 1990s, before the era of combination therapy and before the availability of plasma viral load measurement. Initial toxicity studies showed that the primary target organ of toxicity was the bone marrow. A lack of clear advantages in activity over zidovudine, the only drug approved in the early 1990s, and the potential for bone marrow toxicity caused alovudine development to be stopped [6]. However, later in vitro studies found alovudine to be very effective at suppressing several NRTI-resistant HIV-1 mutants, including isolates with multiple thymidine-associated mutations (TAMs) or multi-NRTI-resistance mutations. Alovudine at a dose of 7.5 mg/day added to a failing antiretroviral combined regimen in patients with isolates resistant to other NRTIs yielded a median viral load decline after a 4-week period in patients not receiving concomitant stavudine. In July 2003, Medivir out-licensed it's HIV antiviral MIV-310 to Boehringer Ingelheim. Under the terms of the agreement, Boehringer Ingelheim will make upfront and milestone payments to Medivir totaling up to 122 million euro in the event that all development and performance milestones are met. In March 2005, Boehringer Ingelheim recently completed a clinical trial of MIV-310 (alovudine) in HIV/AIDS. The efficacy exhibited by MIV-310 at the doses tested showed antiviral activity but did not achieve the target level of efficacy which had previously been defined. Boehringer Ingelheim, therefore, decided to stop the development of this investigational drug.
Status:
Investigational
Source:
INN:mesocarb [INN]
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)


Mesocarb (sydnocarb or 3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine) is a psychomotor stimulant N-alkylated amphetamine derivative. Mesocarb is a selective inhibitor of dopamine uptake, it potently blocks dopamine transporter. It is very likely that mesocarb is being used by drug addicts. Mesocarb is included in the World Anti-Doping Agency’s list of substances and methods that are prohibited in sports. It is used in Russia for the treatment of a variety of neuropsychiatric comorbidities.