U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 2211 - 2220 of 2243 results

Cefatrizine is a broad-spectrum, semisynthetic, first-generation cephalosporin with antibacterial activity. Cefatrizine binds to and inactivates penicillin-binding proteins (PBPs) located on the inner membrane of the bacterial cell wall. PBPs are enzymes involved in the terminal stages of assembling the bacterial cell wall and in reshaping the cell wall during growth and division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis. Cefatrizine is used to treat a large variety of bacterial infections, such as respiratory tract, ear, skin and urinary tract infections. Cefatrizine is less effective against gram positive bacteria than first generation drugs. Antibiotics require constant drug level in body for therapeutic effect.
Flomoxef is a cephamycin antibiotic with a difluoromethylthio-acetamido group at the 7-beta position of the cephem nucleus, commonly used for postoperative prophylaxis. Flomoxef has activity against epidermides, streptococci, propionibacteria, and both methicillin-resistant and -susceptible Staphylococcus aureus. Flomoxef exhibits a broad spectrum of antibacterial activity against G(+), G(-) and even anaerobes such as Staphylococcus sp., Escherichia coli, and Bacteroides sp., and it can be used singly to treat infection caused by aerobes and anaerobes (Mixed infection) effectively. Flomoxef belongs to the cephamycin, so it is very stable against β-lactamase as well as Extended Spectrum β-lactamase (ESBL), a novel resistance induced by Enterobacteriaceae. There is no Oxyimino group in the structure of Flomoxef, so it won’t derive ESBL and it is also effective for the treatment to ESBL infection. No disulfiram-like reaction and less incidence of vitamin K deficiency than that of Latamoxef. Marketed in Japan as FLUMARIN.
Status:
Possibly Marketed Outside US
Source:
Japan:Thiamphenicol
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Thiamphenicol is a broad-spectrum antibiotic, which is active against gram-positive and gram-negative organisms. The drug is marketed in Asia and Latin America for the treatment of various infections, including sexually transmitted diseases. As many phenicols, thiamphenicol inhibits the protein synthesis in bacterias by binding to 23S ribosomal subunit. In Europe and USA the drug is used in a veterinary practice.
Cefuzoname (CZON, L-105) is a second-generation cephalosporin antibiotic, has broad spectrum on Gram-positive or -negative bacteria and may also be effective against Staphylococcus aureus against which third generation cephalosporins are largely ineffective.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefetamet Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefetamet pivoxil is an oral third-generation cephalosporin which is hydrolysed to form the active agent, cefetamet. Cefetamet has excellent in vitro activity against the major respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella (Branhamella) catarrhalis and group A beta-haemolytic streptococci; it is active against beta-lactamase-producing strains of H. influenzae and M. catarrhalis, but has poor activity against penicillin-resistant S. pneumoniae. Cefetamet has marked activity against Neisseria gonorrhoeae and possesses a broad spectrum of activity against Enterobacteriaceae. Both staphylococci and Pseudomonas spp. are resistant to cefetamet. Cefetamet pivoxil has been investigated in the treatment of both upper and lower community-acquired respiratory tract infections and has demonstrated equivalent efficacy to a number of more established agents, namely cefaclor, amoxicillin and cefixime. In complicated urinary tract infections, cefetamet pivoxil showed similar efficacy to cefadroxil, cefaclor and cefuroxime axetil. Cefetamet pivoxil was effective in the treatment of otitis media, pneumonia, pharyngotonsillitis and urinary tract infections in children. Cefetamet is not extensively bound to plasma proteins. Cefetamet has a relatively small apparent volume of distribution consistent with that of other beta-lactam antibiotics. The absorption and disposition of cefetamet in human subpopulations [i.e. children, elderly (< 75 years of age), renal impairment, liver disease and patients taking concomitant drugs] have been studied extensively. Only impaired renal function appears to significantly alter the elimination of this drug. Cefetamet pivoxil exerts its bactericidal action by inhibition the final transpeptidation step of peptidoglycan synthesis in the bacterial cell wall by binding to one or more of the Penicillin-binding Proteins (PBPs).
Status:
Possibly Marketed Outside US
Source:
Japan:Ceftezole Sodium
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Ceftezole sodium is a cephalosporin antibiotic. Ceftezole was found to be a broad-spectrum antibiotic, active in vitro against many species of gram-positive and gram-negative bacteria except Pseudomonas aeruginosa, Serratia marcescens and Proteus vulgaris. Ceftezole sodium is used as an injectable or through an intravenous mode of delivery. The bactericidal activity of ceftezole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). The PBPs are transpeptidases which are vital in peptidoglycan biosynthesis. Therefore, their inhibition prevents this vital cell wall component from being properly synthesized. Ceftezole has been shown to exhibit potent alpha-glucosidase inhibitory activity. In in vitro alpha-glucosidase assays, ceftezole was shown to be a reversible, non-competitive inhibitor of yeast alpha-glucosidase with a Ki value of 5.78 x 10(-7) M when the enzyme mixture was pretreated with ceftezole. Ceftezole is used for the treatment of susceptible bacterial infections including septicemia, respiratory, biliary or GU tract, skin and skin structure, endocarditis. Surgical prophylaxis.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (ACHIRAL)

Conditions:

Fipexide (aka attentil and vigilor) is a psychoactive drug of the piperazine class which was developed in Italy in 1983. It was used in Italy and France for the treatment of senile dementia but is no longer in common use due to undesirable side effects including fever and hepatitis.
Status:
Possibly Marketed Outside US
Source:
Japan:Cefetamet Pivoxil Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefetamet pivoxil is an oral third-generation cephalosporin which is hydrolysed to form the active agent, cefetamet. Cefetamet has excellent in vitro activity against the major respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Moraxella (Branhamella) catarrhalis and group A beta-haemolytic streptococci; it is active against beta-lactamase-producing strains of H. influenzae and M. catarrhalis, but has poor activity against penicillin-resistant S. pneumoniae. Cefetamet has marked activity against Neisseria gonorrhoeae and possesses a broad spectrum of activity against Enterobacteriaceae. Both staphylococci and Pseudomonas spp. are resistant to cefetamet. Cefetamet pivoxil has been investigated in the treatment of both upper and lower community-acquired respiratory tract infections and has demonstrated equivalent efficacy to a number of more established agents, namely cefaclor, amoxicillin and cefixime. In complicated urinary tract infections, cefetamet pivoxil showed similar efficacy to cefadroxil, cefaclor and cefuroxime axetil. Cefetamet pivoxil was effective in the treatment of otitis media, pneumonia, pharyngotonsillitis and urinary tract infections in children. Cefetamet is not extensively bound to plasma proteins. Cefetamet has a relatively small apparent volume of distribution consistent with that of other beta-lactam antibiotics. The absorption and disposition of cefetamet in human subpopulations [i.e. children, elderly (< 75 years of age), renal impairment, liver disease and patients taking concomitant drugs] have been studied extensively. Only impaired renal function appears to significantly alter the elimination of this drug. Cefetamet pivoxil exerts its bactericidal action by inhibition the final transpeptidation step of peptidoglycan synthesis in the bacterial cell wall by binding to one or more of the Penicillin-binding Proteins (PBPs).
Status:
Possibly Marketed Outside US
Source:
Japan:Cefminox Sodium
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Cefminox is a broad-spectrum, bactericidal cephalosporin antibiotic. It is especially effective against Gram-negative and anaerobic bacteria. It is indicated in treatment of the following infections caused by sensitive bacteria: 1. Respiratory infections: Amygdalitis, circumtonsillar abscess, bronchitis, bronchiolitis, bronchiectasis (in fection), secondary infections of chronic respiratory diseases, pneumonia, and pulmonary suppuration; 2. Infection in urinary system: Nephropyelitis, cystitis; 3. Infections in abdominal cavity: Cholecystitis' angiocholitis'peritonitis; 4. Infections in pelvic cavity: Pelvic peritonitis, adnexitis, intrauterine infection, inflammation in pelvic dead space, and parametritis; 5. Septicaemia.
Status:
Possibly Marketed Outside US
Source:
Japan:Tiaramide Hydrochloride
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)


Tiaramide is an anti-inflammatory and analgesic drug, which was developed by Fujisawa Pharmaceutical (now Astellas pharma) and used in Japan under the name Solantol for the treatment of different pain and inflammatory disorders. Later on, Astellas recalled the product by reasons other than safety. The mechanism of tiaramide action is unknown.

Showing 2211 - 2220 of 2243 results