U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 211 - 220 of 13315 results

Status:
First approved in 1938
Source:
Oreton-M by Schering
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Methyltestosterone is an anabolic steroid hormone used to treat men with a testosterone deficiency. It is also used in women to treat breast cancer, breast pain, swelling due to pregnancy, and with the addition of estrogen it can treat symptoms of menopause. The effects of testosterone in humans and other vertebrates occur by way of two main mechanisms: by activation of the androgen receptor (directly or as DHT), and by conversion to estradiol and activation of certain estrogen receptors. Free testosterone (T) is transported into the cytoplasm of target tissue cells, where it can bind to the androgen receptor, or can be reduced to 5α-dihydrotestosterone (DHT) by the cytoplasmic enzyme 5α-reductase. DHT binds to the same androgen receptor even more strongly than T, so that its androgenic potency is about 2.5 times that of T. The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind directly to specific nucleotide sequences of the chromosomal DNA. The areas of binding are called hormone response elements (HREs), and influence transcriptional activity of certain genes, producing the androgen effects. Methyltestosterone is marketed under the brand names Android, Androral, Metandren, Oraviron, Testred, Virilon.
Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED). After oral administration, lisdexamfetamine dimesylate is rapidly absorbed from the gastrointestinal tract and converted to dextroamphetamine, which is responsible for the drug’s activity. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. Most common adverse reactions in children, adolescents and/or adults with ADHD were anorexia, anxiety, decreased appetite, decreased weight, diarrhea, dizziness, dry mouth, irritability, insomnia, nausea, upper abdominal pain, and vomiting. Agents that alter urinary pH can alter blood levels of amphetamine. Acidifying agents decrease amphetamine blood levels, while alkalinizing agents increase amphetamine blood levels. Needs to adjust Lisdexamfetamine dosage accordingly.
Status:
First marketed in 1931
Source:
Benzedrine Inhaler
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Amphetamine is a potent central nervous system (CNS) stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity. Amphetamine was discovered in 1887 and exists as two enantiomers: levoamphetamine and dextroamphetamine. The mode of therapeutic action in ADHD is not known. Amphetamines are thought to block the reuptake of norepinephrine and dopamine into the presynaptic neuron and increase the release of these monoamines into the extraneuronal space. At higher dosages, they cause release of dopamine from the mesocorticolimbic system and the nigrostriatal dopamine systems. Amphetamine may also act as a direct agonist on central 5-HT receptors and may inhibit monoamine oxidase (MAO). In the periphery, amphetamines are believed to cause the release of noradrenaline by acting on the adrenergic nerve terminals and alpha- and beta-receptors. Modulation of serotonergic pathways may contribute to the calming affect. The drug interacts with VMAT enzymes to enhance release of DA and 5-HT from vesicles. It may also directly cause the reversal of DAT and SERT. Several currently prescribed amphetamine formulations contain both enantiomers, including Adderall, Dyanavel XR, and Evekeo, the last of which is racemic amphetamine sulfate. Amphetamine is also prescribed in enantiopure and prodrug form as dextroamphetamine and lisdexamfetamine respectively. Lisdexamfetamine is structurally different from amphetamine, and is inactive until it metabolizes into dextroamphetamine.
Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters. Atropine is relatively selective for muscarinic receptors. Its potency at nicotinic receptors is much lower, and actions at non-muscarinic receptors are generally undetectable clinically. Atropine does not distinguish among the M1, M2, and M3 subgroups of muscarinic receptors.
Status:
First marketed in 1921
Source:
Acetic Acid U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)



Acetic acid (a component of vinagre) is used in medicine for the treatment of otitis externa caused by bacterial infections. The solution containing acetic acid was approved by FDA.
Status:
First marketed in 1921
Source:
Elixir of Iron Lactate N.F.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Sodium lactate is primarily indicated as a source of bicarbonate for prevention or control of mild to moderate metabolic acidosis in patients with restricted oral intake whose oxidative processes are not seriously impaired. Sodium Lactate is most commonly associated with an E number of “E325” Sodium Lactate blends are commonly used in meat and poultry products to extend shelf life and increase food safety. They have a broad antimicrobial action and are effective at inhibiting most spoilage and pathogenic bacteria. In addition sodium lactate is used in cosmetics as a humectant, providing moisture.
Status:
First marketed in 1921
Source:
Sodium Glycerophosphate U.S.P.
Source URL:

Class (Stereo):
CHEMICAL (RACEMIC)



Synthetic glycerophosphates have been known for many years and have been prepared in several ways. The acid may exist in two isomeric forms, alpha and beta. The L-a-acid is the naturally occurring form; the b-acid, present in hydrolyzates of lecithins from natural sources, arises from migration of the phosphoryl group from the a-carbon atom. Dehydrogenation of L-glycerol 3-phosphate produces Dihydroxyacetone phosphate and is part of the entry of glycerol (sourced from triglycerides) into the glycolytic pathway.
The alkaloid L-(-)-scopolamine [L-(-)-hyoscine], a belladonna alkaloid, competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. Scopolamine acts: i) as a competitive inhibitor at postganglionic muscarinic receptor sites of the parasympathetic nervous system, and ii) on smooth muscles that respond to acetylcholine but lack cholinergic innervation. It has been suggested that scopolamine acts in the central nervous system (CNS) by blocking cholinergic transmission from the vestibular nuclei to higher centers in the CNS and from the reticular formation to the vomiting center. Scopolamine can inhibit the secretion of saliva and sweat, decrease gastrointestinal secretions and motility, cause drowsiness, dilate the pupils, increase heart rate, and depress motor function. Scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting (post operative and associated with motion sickness).
Status:
First marketed in 1827

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Morphine is one of the most important and widely used opioid for the treatment of chronic and acute pain: the very wide interindividual variability in the patients’ response to the drug may have genetic derivations. Sulphate salt of morphine sold under the many brand names, one of them, DURAMORPH, which is indicated for the management of pain severe enough to require use of an opioid analgesic by intravenous administration, and for which alternative treatments are not expected to be adequate. In addition for the epidural or intrathecal management of pain without attendant loss of motor, sensory, or sympathetic function. Morphine is a full opioid agonist and is relatively selective for the mu-opioid receptor, although it can bind to other opioid receptors at higher doses. The principal therapeutic action of morphine is analgesia. Like all full opioid agonists, there is no ceiling effect for analgesia with morphine. The precise mechanism of the analgesic action is unknown. However, specific CNS opioid receptors for endogenous compounds with opioid-like activity have been identified throughout the brain and spinal cord and are thought to play a role in the analgesic effects of this drug. Morphine has a high potential for addiction and abuse. Common side effects include drowsiness, vomiting, and constipation. Caution is advised when used during pregnancy or breast-feeding, as morphine will affect the baby.
Status:
US Approved OTC
Source:
21 CFR 341.20(b)(1) cough/cold:nasal decongestant levmetamfetamine
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Levomethamphetamine is the levorotary (L-enantiomer) form of methamphetamine. Levomethamphetamine is a sympathomimetic vasoconstrictor which is the active ingredient in some over-the-counter (OTC) nasal decongestant inhalers in the United States. Levomethamphetamine crosses the blood-brain-barrier and acts as a TAAR1 agonist, functioning as a selective norepinephrine releasing agent (with few or no effects on the release of dopamine), so it affects the central nervous system, although its effects are qualitatively distinct relative to those of dextromethamphetamine. Levomethamphetamine does not possess the potential for euphoria or addiction that dextromethamphetamine possesses. Among its physiological effects are the vasoconstriction that makes it useful for nasal decongestion. The elimination half-life of levomethamphetamine is between 13.3 and 15 hours, whereas dextromethamphetamine has a half-life of about 10.5 hours. When the nasal decongestant is taken in excess, levomethamphetamine has potential side effects resembling those of other sympathomimetic drugs; these effects include hypertension (elevated blood pressure), tachycardia (rapid heart rate), nausea, stomach cramps, dizziness, headache, sweating, muscle tension, and tremors. Central side effects may include anxiety, insomnia, and anorexia