{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
{{facet.count}}
Search results for folic root_relationships_relatedSubstance_refPname in Related Substance Name (approximate match)
Status:
US Approved Rx
(2020)
Source:
NDA212295
(2020)
Source URL:
First approved in 2020
Source:
NDA212295
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Remimazolam is an intravenous benzodiazepine sedative-hypnotic with rapid onset and offset of action. This compound undergoes organ-independent metabolism to an inactive metabolite. Like other benzodiazepines, remimazolam can be reversed with flumazenil to rapidly terminate sedation and anesthesia. Phase I and II clinical trials have shown that remimazolam is safe and effective when used for procedural sedation. Phase III clinical trials have been completed investigating efficacy and safety in patients undergoing bronchoscopy and colonoscopy. The developer of this drug has suggested that intensive care unit sedation (beyond 24 hours) could be another possible indication for further development, since it is unlikely that prolonged infusions or higher doses of remimazolam would result in accumulation and extended effect.
Status:
US Approved Rx
(2020)
Source:
NDA212728
(2020)
Source URL:
First approved in 2020
Source:
NDA212728
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Bristol-Myers Squibb developed Rimegepant, also known as BMS-927711. Rimegepant is a potent, selective, competitive and orally active calcitonin gene-related peptide (CGRP) antagonist in clinical trials for treating migraine. Rimegepant has shown in vivo efficacy without vasoconstrictor effect; it is superior to placebo at several different doses (75 mg, 150 mg, and 300 mg) and has an excellent tolerability profile.
Status:
US Approved Rx
(2020)
Source:
NDA212801
(2020)
Source URL:
First approved in 2020
Source:
NDA212801
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Osilodrostat (INN, USAN) (developmental code name LCI-699) is an orally active, non-steroidal corticosteroid biosynthesis inhibitor which is under development by Novartis for the treatment of Cushing's syndrome and pituitary ACTH hypersecretion (a specific subtype of Cushing's syndrome). Osilodrostat specifically acts as a potent and selective inhibitor of aldosterone synthase (CYP11B2) and at higher dosages of 11β-hydroxylase (CYP11B1). Osilodrostat decreases plasma and urinary aldosterone levels and rapidly corrects hypokalemia, in patients with primary aldosteronism and hypertension. At doses ≥1 mg o.d. Osilodrostat markedly increases 11-deoxycortisol plasma levels and blunts ACTH-stimulated cortisol release in ≈20% of patients, consistent with the inhibition of CYP11B1. In patients with resistant hypertension, Osilodrostat produces a non-significant reduction in blood pressure, possibly due to the increase in 11-deoxycortisol levels and the stimulation of the hypothalamic-pituitary-adrenal feedback axis. Because of the lack of selectivity, poor antihypertensive effect, and short half-life, the development of Osilodrostat as antihypertensive was halted. As of 2017, Osilodrostat is in phase III and phase II clinical trials for the treatment of pituitary ACTH hypersecretion and Cushing's syndrome, respectively.
Status:
US Approved Rx
(2020)
Source:
NDA213464
(2020)
Source URL:
First approved in 2020
Source:
NDA213464
Source URL:
Class (Stereo):
CHEMICAL (RACEMIC)
Targets:
Nifurtimox is a nitrofuran derivative used as a primary agent in the treatment of American trypanosomiasis (Chagas' disease) caused by Trypanosoma cruzi, especially in the acute, early stage of the disease. The efficacy of nifurtimox in the treatment of chronic Chagas' disease varies from one country to another, possibly due to variation in the sensitivity of different strains of the organism. Nifurtimox has also been used to treat African trypanosomiasis (sleeping sickness) and is active in the second stage of the disease (central nervous system involvement). When nifurtimox is given on its own, about half of all patients will relapse, but the combination of melarsoprol with nifurtimox appears to be efficacious. Nifurtimox forms a nitro-anion radical metabolite that reacts with nucleic acids of the parasite causing significant break down of DNA. Nifurtimox undergoes reduction and creates oxygen radicals such as superoxide. These radicals are toxic to T. cruzi. Mammalian cells are protected by the presence of catalase, glutathione, peroxidases, and superoxide dismutase. Accumulation of hydrogen peroxide to cytotoxic levels results in parasite death. Side effects occur following chronic administration, particularly in elderly people. Major toxicities include immediate hypersensitivities such as anaphylaxis and delayed hypersensitivity reaction involving icterus and dermatitis. Central nervous system disturbances and peripheral neuropathy may also occur.
Status:
US Approved Rx
(2020)
Source:
NDA209899
(2020)
Source URL:
First approved in 2020
Source:
NDA209899
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Ozanimod (previously known as RPC-1063) is a selective immune-inflammatory modulator of the G protein-coupled receptors sphingosine 1-phosphate 1 and 5, which are part of the sphingosine 1-phosphate (S1P) receptor family. Treatment with S1P receptor modulators interferes with S1P signaling and blocks the response of lymphocytes (a type of white blood cell) to exit signals from the lymph nodes, sequestering them within the nodes. The result is a downward modulation of circulating lymphocytes and anti-inflammatory activity by inhibiting cell migration to sites of inflammation. Ozanimod is currently in phase III clinical trials for the treatment of relapsing multiple sclerosis (RMS) and ulcerative colitis, and also in phase II clinical trials to determine whether it is effective in the treatment of Crohn's disease.
Status:
US Approved Rx
(2020)
Source:
NDA213756
(2020)
Source URL:
First approved in 2020
Source:
NDA213756
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Selumetinib (AZD6244 or ARRY-142886) is a potent, selective, and ATP-uncompetitive inhibitor of Ras-Raf-mitogen-activated protein kinase kinase (MEK1/2). This inhibition can prevent ERK activation, disrupt downstream signal transduction, and inhibit cancer cell proliferation and survival. Selumetinib has shown tumour suppressive activity in multiple rodent models of human cancer including melanoma, pancreatic, colon, lung, and breast cancers. AstraZeneca is responsible for development and commercialization of selumetinib.
Status:
US Approved Rx
(2019)
Source:
NDA212099
(2019)
Source URL:
First approved in 2019
Source:
NDA212099
Source URL:
Class (Stereo):
CHEMICAL (EPIMERIC)
Targets:
ODM-201 (also known as BAY-1841788) is a non-steroidal antiandrogen, specifically, a full and high-affinity antagonist of the androgen receptor (AR), that is under development by Orion and Bayer HealthCare for the treatment of advanced, castration-resistant prostate cancer (CRPC). ODM-201 appears to negligibly cross the blood-brain-barrier. This is beneficial due to the reduced risk of seizures and other central side effects from off-target GABAA receptor inhibition that tends to occur in non-steroidal antiandrogens that are structurally similar to enzalutamide. Moreover, in accordance with its lack of central penetration, ODM-201 does not seem to increase testosterone levels in mice or humans, unlike other non-steroidal antiandrogens. Another advantage is that ODM-201 has been found to block the activity of all tested/well-known mutant ARs in prostate cancer, including the recently-identified clinically-relevant F876L mutation. ODM-201 has been studied in phase I and phase II clinical trials and has thus far been found to be effective and well-tolerated, with the most commonly reported side effects including fatigue, nausea, and diarrhea. No seizures have been observed.
Status:
US Approved Rx
(2019)
Source:
NDA212526
(2019)
Source URL:
First approved in 2019
Source:
NDA212526
Source URL:
Class (Stereo):
CHEMICAL (ABSOLUTE)
Conditions:
Alpelisib (BYL719) is a PI3Kα-selective inhibitor. PI3K-AKT-mTOR pathway is frequently activated in cancer, therefore investigational PI3K inhibitor alpelisib is considered to be effective as an anticancer agent and has been in clinical development by Novartis. Alpelisib have demonstrated activity in preclinical models of solid tumors and had favorable tolerability profiles, with the most common adverse events consistent with “on-target” inhibition of PI3K in early clinical studies. There are ongoing clinical trials of alpelisib in a range of cancer types, including breast cancer, head and neck squamous cell carcinoma, non-small cell lung carcinoma, lymphoma, and glioblastoma multiforme. Combination therapy with other chemo therapeutics may be preferable.
Status:
US Approved Rx
(2019)
Source:
NDA211527
(2019)
Source URL:
First approved in 2019
Source:
NDA211527
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Trifarotene is a novel first-in-class fourth-generation topical retinoid. It is a potent and selective RAR gamma-agonist. In multiple mouse models, trifarotene exhibited superior comedolytic, anti-inflammatory and depigmenting activity compared with other topical retinoids. In this 52-week study, trifarotene was safe, well-tolerated and effective in moderate facial and truncal acne. Trifarotene is in phase II clinical trial for the treatment of ichthyosis.
Status:
US Approved Rx
(2019)
Source:
NDA209884
(2019)
Source URL:
First approved in 2019
Source:
NDA209884
Source URL:
Class (Stereo):
CHEMICAL (ACHIRAL)
Targets:
Conditions:
Siponimod (BAF312) is a dual agonist at the sphingosine-1 phosphate receptors, S1PR1 and S1PR5. The S1P receptor is commonly found on the surface of specific cells residing in the central nervous system (CNS), that are responsible for causing CNS damage that drives loss of function in secondary progressive multiple sclerosis (SPMS). Siponimod (BAF312) enters the brain and by binding to these specific receptors, may prevent the activation of these harmful cells, helping to reduce the loss of physical and cognitive function associated with SPMS.