U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 11 - 20 of 212 results

Status:
Investigational
Source:
INN:sonedenoson [INN]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Sonedenoson (MRE0094) is a topical adenosine A2A-receptor agonist which was under clinical development for the treatment of for diabetic foot ulcer. The compound was originally developed by New York University, and licensed to Medco Research (King Pharmaceuticals). King Pharmaceuticals was acquired by Pfizer in 2010. Sonedenoson has been in phase II clinical trials for the treatment of chronic diabetic neuropathic foot ulcers. However, this research has been discontinued.
Tecadenoson is a novel selective A1 adenosine receptor agonist that is currently being evaluated for the conversion of paroxysmal supraventricular tachycardia (PSVT) to sinus rhythm. Adenosine is a naturally occurring compound that stimulates all adenosine receptor subtypes in the body, including the A2 adenosine receptor which lowers blood pressure. In non-clinical trials, tecadenoson selectively stimulated the A1 adenosine receptor in the Atrioventricular node (AV node) and slowed the speed of electrical conduction across the AV node, reducing the number of electrical impulses that reached the ventricle, without affecting blood pressure. Clinical studies to date with intravenous tecadenoson suggest that it may slow the speed of AV nodal conduction by selectively stimulating the A1 adenosine receptor, and may avoid blood pressure lowering by not stimulating the A2 adenosine receptor. Thus, it may be possible to use intravenous tecadenoson to convert patients from PSVT to normal sinus rhythm without lowering blood pressure or causing adverse events related to vasodilation such as flushing, palpitations or a headache.
Status:
Investigational
Source:
INN:puromycin
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)



Puromycin dihydrochloride belongs to the aminonucleoside family of antibiotics and is isolated from Streptomyces alboniger. Since the partial structure of this antibiotic showed it to be a purine derivative, puromycin was assigned as its generic name. Puromycin is a broad spectrum antibiotic and antibacterial agent. It is active against Gram-positive microorganisms, less active against acid-fast bacilli, and weakly active against Gram-negative microorganisms. It acts very quickly and can kill 99% of the cells within 2 days. It also exhibits antitumor activity in studies on brain tumor cells. Puromycin is a protein synthesis inhibitor that causes premature chain termination by acting as an analog of the 3’-terminal end of aminoacyl-tRNA. It has been used to study transcriptional regulatory mechanisms that control the sequential and coordinate expression of genes during cell differentiation.
Status:
Designated
Source:
EU-Orphan Drug:EU/3/14/1392
Source URL:

Class (Stereo):
CHEMICAL (ACHIRAL)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Showing 11 - 20 of 212 results